您现在的位置是: 首页 > 教育改革 教育改革
湖南高考2017数学题_湖南17年高考试卷
tamoadmin 2024-06-05 人已围观
简介1.2017年高考数学自主命题的省份有哪些2.2017年西藏高考数学基础练习(六)3.跪求高中数学题型归纳(湖南省)!4.湖南高考数学知识点总结5.2017高考数学选修没涂,我做的第一题,会怎么样6.高考数学答题要注意的问题2017年高考全国各省市所用考卷:全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西
1.2017年高考数学自主命题的省份有哪些
2.2017年西藏高考数学基础练习(六)
3.跪求高中数学题型归纳(湖南省)!
4.湖南高考数学知识点总结
5.2017高考数学选修没涂,我做的第一题,会怎么样
6.高考数学答题要注意的问题
2017年高考全国各省市所用考卷:
全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆
全国Ⅲ卷地区:云南、广西、贵州、四川
完全自主命题省份 :江苏、北京、天津
部分使用全国卷省份 :
海南省:全国Ⅱ卷(语、数、英) 单独命题(政、史、地、物、化、生)
山东卷:全国Ⅰ卷(外语、文综、理综) 自主命题(语文、文数、理数)
2017年考试改革地区 :
高考改革地区:浙江、上海
考试模式:3 3,不分文理科
必考科目:语文、数学、外语,每科150分
改革后的考试具体安排如下:
外语考试:
浙江每年2次,6月和10月;
上海每年2次,1月和6月
选考科目:
浙江实行7选3,每科满分100分:思想政治、历史、地理、物理、化学、生物、信息技术(特别说明:浙江省的选考科目考试次数为2次,分别在4月和10月,外语和选考成绩2年有效。)
上海实行6选3,每科满分70分,思想政治、历史、地理、物理、化学、生命科学 。
录取方式 :
浙江
1.高考录取不分批次;
2.“专业 学校”平行志愿,按专业平行投档。
上海
1.合并本科第一、二招生批次。
2.“总分 志愿”,分学校实行平行志愿投档和录取。
2017年高考除浙江、上海因实行高考改革变化较大外,全国其他地区保持稳定,考试模式仍与2016年保持一致。
高考,一般指高等教育入学考试,现有普通高校招生考试、自学考试和成人高考三种形式。高考是考生选择大学和进入大学的资格标准,也是国家教育考试之一。
高考由教育部统一组织调度,教育部或实行自主命题的省级考试院(考试局)命题。每年6月7日、6月8日为考试日,部分省区高考时间为3天。高考成绩直接影响所能进入的大学层次,考上一本大学的核心前提就是取得优异的高考成绩。
2015年起,高考将取消体育特长生、奥赛等6项加分项目。2016年,全国940万考生参加高考。
2017年,高考全国卷考试内容调整加重对传统文化考查。全国有940万考生要参加2017高考。从6月22日开始,全国各地的高考成绩陆续出炉。2017年10月19日,教育部部长陈宝生表示,到2020年,我国将全面建立起新的高考制度。
2017年高考数学自主命题的省份有哪些
湖南高考难度大吗?你知道多少?高考题的难度在于,题目的命制非常科学,是一个团队研究的结果,要经过反复论证。一起来看看湖南高考难度大吗,欢迎查阅!
static/uploads/yc/20211129/701acd08b841ccf7ef6de6209475afd4.jpg"width="484"height="300"/>
湖南高考难度大吗
湖南高考地区排名为14。全国各省高考难度总共分为五个模式,,分别为优惠模式、普通模式、困难模式、噩梦模式、地狱模式,而湖南高考难度在全国来说,属于困难模式。
我们采取“985录取率”,“211录取率”,“一本录取率”三个指标的共同排名来评估各地高考竞争烈度,加上一个“清华北大录取率”进行额外评判(因为方差过大,这个指标不算得分),最后进行得分排名。
湖南省高考是困难难度,湖南好的中学非常多,导致湖南高考在全国有比较强的存在感。中学阶段竞争是比较激烈,本身比较好的高校比湖北少很多。所以湖南整体高考呈现的是中等偏难的态势。
湖南省近几年来高考人数持续上涨,从2015年的38.99万人,到2016年的40.16万人,再到2017年的41.1万人,而2018年该省考生人数涨幅较大,高达45.2万人。2019年,湖南省高考人数首次突破50万大关。高考人数猛增的同时,竞争激烈之程度就不难想象了。
为什么新高考更难
高考需要寒窗苦读十二年,可见无论是新的高考还是老的高考都很难。不过,两者相比,新高考确实更难。新高考的“难”主要体现在三个方面。
第一,选科比较难。
在旧的高考模式下,考生只需要在文理科之间进行选择,即物化生和政治史。在新高考模式下,3选6模式下有20个科目组合,12选3模式下有12个科目组合。从这么多组合中很难选出一个既有前途又适合自己的。
二是辊面更柔韧。
新高考政策的目的之一是促进学生的全面和个性发展,更加注重学生创造力和思维能力的培养。因此,新高考试卷的考查更加全面和灵活,也就是说,考生仅靠死记硬背和掌握基础知识是不可能取得高分的。他们必须在平时的学习过程中对方法论和思维方式有更深刻的把握。
第三,志愿填报比较难。
旧的高考的志愿填报按院校选拔,新高考的志愿填报按专业/专业群选拔,也就是志愿填报的观念和思维要改变。此外,考生需要选择最多300个志愿。如何选择和排序这些专业和专业群,对于新高考的考生来说也是非常困难的。
高三学生焦虑厌学怎么办
1、找回自信。自信可以推动人走向成功,可以让人保持轻松愉快的心情,一个人的心理力量就来自于自己以前曾经历过的成功经历和事情,所以,高三学生可以多回想自己的成功过去有利于身心健康。
2、多听音乐释放压力。如果高三学生感到身心疲惫,可以先停下来,坐在椅子或平躺于床上,选择一首自己平常喜欢的、轻松的、能够引人向上的音乐,让自己的思绪静静地随音乐飘散,使自己快乐起来。
3、找朋友家长倾诉。高三学生有了朋友和父母的帮助,郁闷压抑的你也会很快快乐起来。觉得自己憋闷时,找一知己,诉说衷肠,关键是对方能倾听你的苦恼,而不需要为你出任何主意或办法,只要对方说“听你说”就够了。
4、要相信任何事情都有解决方法。更多的时候,有些人因为无助才绝望,有时候自己觉得是山穷水尽了,其实船到桥头自然直,所以要相信高考不会让你陷入绝境中,高三学生要想做得更好,改变局面,心态很重要,相信方法总比困难多。
2017年西藏高考数学基础练习(六)
全国Ⅰ卷地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
全国Ⅱ卷地区:甘肃、青海、内蒙古、黑龙江、吉林、辽宁、宁夏、新疆、西藏、陕西、重庆
全国Ⅲ卷地区:云南、广西、贵州、四川
海南省:全国Ⅱ卷(语、数、英)+单独命题(政、史、地、物、化、生)
山东省:全国Ⅰ卷(外语、文综、理综)+自主命题(语文、文数、理数)
江苏省:全部科目自主命题
北京市:全部科目自主命题
天津市:全部科目自主命题
跪求高中数学题型归纳(湖南省)!
一、选择题
1.平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,点D在直线3x-y+1=0上移动,则点B的轨迹方程为( )
A.3x-y-20=0 B.3x-y+10=0
C.3x-y-9=0 D.3x-y-12=0
答案:A 解题思路:设AC的中点为O,即.设B(x,y)关于点O的对称点为(x0,y0),即D(x0,y0),则由3x0-y0+1=0,得3x-y-20=0.
2.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( )
A.1 B.2
C. -2D.3
答案:C 解题思路:当该点是过圆心向直线引的垂线的交点时,切线长最小.因圆心(3,0)到直线的距离为d==2,所以切线长的最小值是l==.
3.直线y=x+b与曲线x=有且只有一个交点,则b的取值范围是( )
A.{b||b|=}
B.{b|-1
C.{b|-1≤b<1}
D.非以上答案
答案:
B 解题思路:在同一坐标系中,画出y=x+b与曲线x=(就是x2+y2=1,x≥0)的图象,如图所示,相切时b=-,其他位置符合条件时需-1
4.若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆所作的切线长的最小值是( )
A.2 B.3
C.4 D.6
答案:C 解题思路:圆的标准方程为(x+1)2+(y-2)2=2,所以圆心为(-1,2),半径为.因为圆关于直线2ax+by+6=0对称,所以圆心在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离为
d==
==.
所以当a=2时,d有最小值=3,此时切线长最小,为==4,故选C.
5.已知动点P到两定点A,B的距离和为8,且|AB|=4,线段AB的中点为O,过点O的所有直线与点P的轨迹相交而形成的线段中,长度为整数的有( )
A.5条 B.6条
C.7条 D.8条
答案:D 命题立意:本题考查椭圆的定义与性质,难度中等.
解题思路:依题意,动点P的轨迹是以A,B为焦点,长轴长是8,短轴长是2=4的椭圆.注意到经过该椭圆的中心O的最短弦长等于4,最长弦长是8,因此过点O的所有直线与点P的轨迹相交而形成的线段中,长度可以为整数4,5,6,7,8,其中长度为4,8的各一条,长度为5,6,7的各有两条,因此满足题意的弦共有8条,故选D.
6.设m,nR,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是( )
A.[1-,1+]
B.(-∞,1-][1+,+∞)
C.[2-2,2+2]
D.(-∞,2-2][2+2,+∞)
答案:D 解题思路: 直线与圆相切,
=1,
|m+n|=,
即mn=m+n+1,
设m+n=t,则mn≤2=,
t+1≤, t2-4t-4≥0,
解得:t≤2-2或t≥2+2.
7.在平面直角坐标系xOy中,设A,B,C是圆x2+y2=1上相异三点,若存在正实数λ,μ,使得=λ+μ,则λ2+(μ-3)2的取值范围是( )
A.[0,+∞) B.(2,+∞)
C.(2,8) D.(8,+∞)
答案:B 解题思路:依题意B,O,C三点不可能在同一直线上, ·=|cos BOC=cos BOC∈(-1,1),又由=λ+μ,得λ=-μ,于是λ2=1+μ2-2μ·,记f(μ)=λ2+(μ-3)2.则f(μ)=1+μ2-2μ·+(μ-3)2=2μ2-6μ-2μ·+10,可知f(μ)>2μ2-8μ+10=2(μ-2)2+2≥2,且f(μ)<2μ2-4μ+10=2(μ-1)2+8无值,故λ2+(μ-3)2的取值范围为(2,+∞).
8.已知圆C:x2+y2=1,点P(x0,y0)在直线x-y-2=0上,O为坐标原点,若圆C上存在一点Q,使得OPQ=30°,则x0的取值范围是( )
A.[-1,1] B.[0,1]
C.[-2,2] D.[0,2]
答案:D 解析:由题知,在OPQ中,=,即=, |OP|≤2,又P(x0,x0-2),则x+(x0-2)2≤4,解得x0[0,2],故选D.
9.过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分成两部分,使得这两部分的面积之差,则该直线的方程为( )
A.x+y-2=0 B.y-1=0
C.x-y=0 D.x+3y-4=0
答案:A 命题立意:本题考查直线、线性规划与圆的综合运用及数形结合思想,难度中等.
解题思路:要使直线将圆形区域分成两部分的面积之差,必须使过点P的圆的弦长达到最小,所以需该直线与直线OP垂直.又已知点P(1,1),则kOP=1,故所求直线的斜率为-1.又所求直线过点P(1,1),故由点斜式得,所求直线的方程为y-1=-(x-1),即x+y-2=0.
10.直线y=kx+3与圆(x-2)2+(y-3)2=4相交于M,N两点,若|MN|≥2,则k的取值范围是( )
A. B.
C.[-, ] D.
答案:B 命题立意:本题考查直线与圆的位置关系,难度中等.
解题思路:在由弦心距d、半径r和半弦长|MN|构成的直角三角形中,由勾股定理,得|MN|=≥,得4-d2≥3,解得d2≤1,又d==,解得k2≤,所以-≤k≤.
二、填空题
11.已知直线l:y=-(x-1)与圆O:x2+y2=1在第一象限内交于点M,且l与y轴交于点A,则MOA的面积等于________.
答案: 命题立意:本题考查直线与圆的位置关系的应用,难度较小.
解题思路:联立直线与圆的方程可得xM=,故SMOA=×|OA|×xM=××=.
12.在ABC中,角A,B,C的对边分别为a,b,c.若a2+b2=c2,则直线ax-by+c=0被圆x2+y2=9所截得的弦长为________.
答案:2 命题立意:本题考查直线与圆位置关系的应用,求解弦长一般采用几何法求解,难度较小.
解题思路:圆心到直线的距离d===,故直线被圆截得的弦长为2=2=2.
13.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,其中O为原点,则点P的轨迹方程是________.
答案:(x-2)2+y2=4(y≠0) 命题立意:本题考查角平分线的性质及直接法求轨迹方程,难度中等.
解题思路:因为A(-2,0),B(1,0)两点,动点P不在x轴上,且满足APO=BPO,故点P在角APB的角平分线上,则利用PAPB=AOOB=21,设点P(x,y),则利用关系式可知=2化简可得(x-2)2+y2=4(y≠0).
14.若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为2,则m的倾斜角可以是
15° 30° 45° 60° 75°
其中正确答案的序号是________.(写出所有正确答案的序号)
答案: 解题思路:设直线m与l1,l2分别交于A,B两点,
过A作ACl2于C,则|AC|==.
又|AB|=2,ABC=30°.
又直线l1的倾斜角为45°,
直线m的倾斜角为45°+30°=75°或45°-30°=15°.
B组
一、选择题
1.已知抛物线C:y2=4x的焦点为F,直线y=2x-4与C交于A,B两点,则cos AFB=( )
A. B.
C.- D.-
答案:D 解题思路:联立消去y得x2-5x+4=0,解得x=1或x=4.
不妨设点A在x轴下方,所以A(1,-2),B(4,4).
因为F(1,0),所以=(0,-2),=(3,4).
因此cos AFB=
==-.故选D.
2.已知抛物线x2=4y上有一条长为6的动弦AB,则AB的中点到x轴的最短距离为( )
A. B.
C.1 D.2
答案:D 解题思路:由题意知,抛物线的准线l为y=-1,过A作AA1l于A1,过B作BB1l于B1,设弦AB的中点为M,过M作MM1l于M1,则|MM1|=,|AB|≤|AF|+|BF|(F为抛物线的焦点),即|AF|+|BF|≥6,即|AA1|+|BB1|≥6,即2|MM1|≥6, |MM1|≥3,即M到x轴的距离d≥2,故选D.
3.设双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,A是双曲线渐近线上的一点,AF2F1F2,原点O到直线AF1的距离为|OF1|,则渐近线的斜率为( )
A.或- B.或-
C.1或-1 D.或-
答案:D 命题立意:本题考查了双曲线的几何性质的探究,体现了解析几何的数学思想方法的巧妙应用,难度中等.
解题思路:如图如示,不妨设点A是第一象限内双曲线渐近线y=x上的一点,由AF2F1F2,可得点A的坐标为,又由OBAF1且|OB|=|OF1|,即得sin OF1B=,则tan OF1B=,即可得=, =,得=,由此可得该双曲线渐近线的斜率为或-,故应选D.
4.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,与直线y=b相切的F2交椭圆于点E,E恰好是直线EF1与F2的切点,则椭圆的离心率为( )
A. B.
C. D.
答案:C 解题思路:由题意可得,EF1F2为直角三角形,且F1EF2=90°,
|F1F2|=2c,|EF2|=b,
由椭圆的定义知|EF1|=2a-b,
又|EF1|2+|EF2|2=|F1F2|2,
即(2a-b)2+b2=(2c)2,整理得b=a,
所以e2===,故e=,故选C.
5.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为( )
A. B.2 C.4 D.8
答案:C 解题思路:由题意得,设等轴双曲线的方程为-=1,又抛物线y2=16x的准线方程为x=-4,代入双曲线的方程得y2=16-a2y=±,所以2=4,解得a=2,所以双曲线的实轴长为2a=4,故选C.
6.抛物线y2=-12x的准线与双曲线-=1的两条渐近线围成的三角形的面积等于( )
A. B.3 C. D.3
答案:B 命题立意:本题主要考查抛物线与双曲线的性质等基础知识,意在考查考生的运算能力.
解题思路:依题意得,抛物线y2=-12x的准线方程是x=3,双曲线-=1的渐近线方程是y=±x,直线x=3与直线y=±x的交点坐标是(3,±),因此所求的三角形的面积等于×2×3=3,故选B.
7.若双曲线-=1与椭圆+=1(m>b>0)的离心率之积大于1,则以a,b,m为边长的三角形一定是( )
A.等腰三角形 B.直角三角形
C.锐角三角形 D.钝角三角形
答案:D 解题思路:双曲线的离心率为e1=,椭圆的离心率e2=,由题意可知e1·e2>1,即b2(m2-a2-b2)>0,所以m2-a2-b2>0,即m2>a2+b2,由余弦定理可知三角形为钝角三角形,故选D.
8. F1,F2分别是双曲线-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左、右两支分别交于A,B两点.若ABF2是等边三角形,则该双曲线的离心率为( )
A.2 B. C. D.
答案:B 命题立意:本题主要考查了双曲线的定义、标准方程、几何性质以及基本量的计算等基础知识,考查了考生的推理论证能力以及运算求解能力.
解题思路:如图,由双曲线定义得,|BF1|-|BF2|=|AF2|-|AF1|=2a,因为ABF2是正三角形,所以|BF2|=|AF2|=|AB|,因此|AF1|=2a,|AF2|=4a,且F1AF2=120°,在F1AF2中,4c2=4a2+16a2+2×2a×4a×=28a2,所以e=,故选B.
9.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )
A.2 B.3
C. D.
答案:A 解题思路:设抛物线y2=4x上一动点P到直线l1和直线l2的距离分别为d1,d2,根据抛物线的定义可知直线l2:x=-1恰为抛物线的准线,抛物线的焦点为F(1,0),则d2=|PF|,由数形结合可知d1+d2=d1+|PF|取得最小值时,即为点F到l1的距离,利用点到直线的距离公式得最小值为=2,故选A.
10.已知双曲线-=1(a>0,b>0),A,B是双曲线的两个顶点,P是双曲线上的一点,且与点B在双曲线的同一支上,P关于y轴的对称点是Q.若直线AP,BQ的斜率分别是k1,k2,且k1·k2=-,则双曲线的离心率是( )
A. B. C. D.
答案:C 命题立意:本题考查双曲线方程及其离心率的求解,考查化简及变形能力,难度中等.
解题思路:设A(0,-a),B(0,a),P(x1,y1),Q(-x1,y1),故k1k2=×=,由于点P在双曲线上,故有-=1,即x=b2=,故k1k2==-=-,故有e===,故选C.
二、填空题
11.已知抛物线y2=4x的焦点为F,过点P(2,0)的直线交抛物线于A(x1,y1)和B(x2,y2)两点,则(1)y1y2=________;(2)三角形ABF面积的最小值是________.
答案:(1)-8 (2)2 命题立意:本题主要考查直线与抛物线的位置关系,难度中等.
解题思路:设直线AB的方程为x-2=m(y-0),即x=my+2,联立得y2-4my-8=0.(1)由根与系数的关系知y1y2=-8.(2)三角形ABF的面积为S=|FP||y1-y2|=×1×=≥2.
知识拓展:将ABF分割后进行求解,能有效减少计算量.
12. B1,B2是椭圆短轴的两端点,O为椭圆中心,过左焦点F1作长轴的垂线交椭圆于P,若|F1B2|是|OF1|和|B1B2|的等比中项,则的值是________.
答案: 命题立意:本题考查椭圆的基本性质及等比中项的性质,难度中等.
解题思路:设椭圆方程为+=1(a>b>0),令x=-c,得y2=, |PF1|=. ==,又由|F1B2|2=|OF1|·|B1B2|,得a2=2bc. a4=4b2(a2-b2), (a2-2b2)2=0, a2=2b2, =.
13.已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B.若=,则p=________.
答案:2 解题思路:过B作BE垂直于准线l于E,
=, M为AB的中点,
|BM|=|AB|,又斜率为,
BAE=30°, |BE|=|AB|,
|BM|=|BE|, M为抛物线的焦点,
p=2.
14.
如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若B1PA2为钝角,则此椭圆的离心率的取值范围为________.
答案: 解题思路:设椭圆的方程为+=1(a>b>0),B1PA2为钝角可转化为,所夹的角为钝角,则(a,-b)·(-c,-b)0, e>或e<,又0
15.在平面直角坐标系xOy中,已知双曲线C:-=1.设过点M(0,1)的直线l与双曲线C交于A,B两点,若=2,则直线l的斜率为________.
答案:± 命题立意:本题考查直线与双曲线的位置关系,难度中等.
解题思路:联立直线与双曲线,结合根与系数的关系及向量的坐标运算求解.由题意可知,直线l与双曲线的两支相交,故设直线l:y=kx+1,k,代入双曲线方程整理得(3-4k2)x2-8kx-16=0(*).设A(x1,y1),B(x2,y2),则由=2得x1=-2x2,在(*)中,利用根与系数的关系得x1+x2=,解得x2=-,y2=,代入双曲线方程整理得16k4-16k2+3=0,解得k2=,故直线l的斜率是±.
湖南高考数学知识点总结
几种数学题型解法归纳
第一种:数列(等差数列与等比数列)
——北京十二中特级教师 刘文武
清华附中特级教师 张小英
数列是高中数学中的一个重要课题,也是数学竞赛中经常出现的问题。数列中最基本的是等差数列与等比数列。
所谓数列,就是按一定次序排列的一列数。如果数列{an}的第n项an与项数(下标)n之间的函数关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式。
从函数角度看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。
为了解数列竞赛题,首先要深刻理解并熟练掌握两类基本数列的定义、性质有关公式,把握它们之间的(同构)关系。
一、 等差数列
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列{an}的通项公式为:
an=a1+(n-1)d (1)
前n项和公式为:
(2)
从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列{an}中,等差中项:
,
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
二、 等比数列
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
等比数列{an}的通项公式是:
an=a1·qn-1
前n项和公式是:
在等比数列中,等比中项:
,
且任意两项am,an的关系为an=am·qn-m
如果等比数列的公比q满足0<∣q∣<1,这个数列就叫做无穷递缩等比数列,它的各
项的和(又叫所有项的和)的公式为:
从等比数列的定义、通项公式、前n项和公式可以推出:
a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,则有:
ap·aq=am·an,
记πn=a1·a2…an,则有
π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则{Can}是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
重要的不仅是两类基本数列的定义、性质,公式;而且蕴含于求和过程当中的数学思想方法和数学智慧,也是极其珍贵的,诸如“倒排相加”(等差数列),“错位相减”(等比数列)。
数列中主要有两大类问题,一是求数列的通项公式,二是求数列的前n项和。
三、 范例
例1.设ap,aq,am,an是等比数列{an}中的第p、q、m、n项,若p+q=m+n,求证:apoaq=amoan
证明:设等比数列{an}的首项为a1,公比为q,则
ap=a1·qp-1,aq=a1·qq-1,am=a1·qm-1,an=a1·qn-1
所以:
ap·aq=a12qp+q-2,am·an=a12·qm+n-2,
故:ap·aq=am+an
说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:
a1+k·an-k=a1·an
对于等差数列,同样有:在等差数列{an}中,距离两端等这的两项之和等于首末两项之和。即:
a1+k+an-k=a1+an
例2.在等差数列{an}中,a4+a6+a8+a10+a12=120,则2a9-a10=
A.20 B.22 C.24 D28
解:由a4+a12=2a8,a6+a10 =2a8及已知或得
5a8=120,a8=24
而2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24。
故选C
例3.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )
A.a1+a101>0 B. a2+a100<0 C.a3+a99=0 D.a51=51
[2000年北京春季高考理工类第(13)题]
解:显然,a1+a2+a3+…+a101
故a1+a101=0,从而a2+a100=a3+a99=a1+a101=0,选C
例4.设Sn为等差数列{an}的前n项之各,S9=18,an-4=30(n>9),Sn=336,则n为( )
A.16 B.21 C.9 D8
解:由于S9=9×a5=18,故a5=2,所以a5+an-4=a1+an=2+30=32,而,故n=21选B
例5.设等差数列{an}满足3a8=5a13,且a1>0,Sn为其前n项之和,则Sn(n∈N*)中最大的是( )。 (1995年全国高中联赛第1题)
(A)S10 (B)S11 (C)S20 (D)S21
解:∵3a8=5a13
∴3(a1+7d)=5(a1+12d)
故
令an≥0→n≤20;当n>20时an<0
∴S19=S20最大,选(C)
注:也可用二次函数求最值
例6.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有( )
(A)2个 (B)3个 (C)4个 (D)5个
[1997年全国高中数学联赛第3题]
解:设等差数列首项为a,公差为d,则依题意有( )
即[2a+(n-1)d]on=2×972 (*)
因为n是不小于3的自然数,97为素数,故数n的值必为2×972的约数(因数),它只能是97,2×97,972,2×972四者之一。
若d>0,则d≥1由(*)式知2×972≥n(n-1)d≥n(n-1)故只可能有n=97,(*)式化为:a+48d=97,这时(*)有两组解:
若d=0,则(*)式化为:an=972,这时(*)也有两组解。
故符今题设条件的等差数列共4个,分别为:
49,50,51,…,145,(共97项)
1,3,5,…,193,(共97项)
97,97,97,…,97,(共97项)
1,1,1,…,1(共972=9409项)
故选(C)
例7.将正奇数集合{1,3,5,…}由小到大按第n组有(2n-1)个奇数进行分组:
{1}, {3,5,7},{9,11,13,15,17},…
(第一组) (第二组) (第三组)
则1991位于第 组中。
[1991年全国高中数学联赛第3题]
解:依题意,前n组中共有奇数
1+3+5+…+(2n-1)=n2个
而1991=2×996-1,它是第996个正奇数。
∵312=961<996<1024=322
∴1991应在第31+1=32组中。
故填32
例8.一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为 。
[1989年全国高中联赛试题第4题]
解:设该数为x,则其整数部分为[x],小数部分为x-[x],由已知得:x·(x-[x]=[x]2
其中[x]>0,0<x-[x]<1,解得:
由0<x-[x]<1知,
∴[x]=1,
故应填
例9.等比数列{an}的首项a1=1536,公比,用πn表示它的前n项之积,则πn(n∈N*)最大的是( )
(A)π9 (B)π11 (C)π12 (D)π13
[1996年全国高中数学联赛试题]
解:等比数列{an}的通项公式为,前n项和
因为
故π12最大。
选(C)
例10.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么= 。
[1988年全国高中联赛试题]
解:依题意,有y-x=4(a2-a1) ∴;
又y-x=3(b3-b2) ∴
∴
例11.设x,y,Z是实数,3x,4y,5z成等比数列,且成等差数列,则的值是 。[1992年全国高中数学联赛试题]
解:因为3x,4y,5z成等比数列,所以有
3x·5z=(4y)2 即16y2=15xz ①
又∵成等差数列,所以有即②
将②代入①得:
∵x≠0,y≠0,z≠0
∴64xz=15(x2+2xz+z2)
∴15(x2+z2)=34xz
∴
例12.已知集合M={x,xy,lg(xy)}及N={0,∣x∣,y}
并且M=N,那么的值等于 。
解:由M=N知M中应有一元素为0,任由lg(xy)有意义知xy≠0,从而x≠0,且y≠0,故只有lg(xy)=0, xy=1,M={x,1,0};若y=1,则x=1,M=N={0,1,1}与集合中元素互异性相连,故y≠1,从而∣x∣=1,x=±1;由x=1 y=1(含),由x=-1 y=-1,M=N={0,1,-1}
此时,
从而
注:数列x,x2,x3,…,x2001;以及
在x=y=-1的条件下都是周期为2的循环数列,S2n-1=-2,S2n=0,故2001并不可怕。
例13.已知数列{an}满足3an+1+an=4(n≥1)且a1=9,其前n项之和为Sn,则满足不等式( )
∣Sn-n-6∣<的最小整数n是( )
(A)5 (B)6 (C)7 (D)8
解:[1994年全国高中数学联赛试题]
由3an+1+an=4(n≥1)
3an+1-3=1-an
故数列{an-1}是以8为首项,以为公比的等比数列,所以
当n=7时满足要求,故选(C)
[注]:数列{an}既不是等差数列,也不是等比数列,而是由两个项数相等的等差数列:1,1,…,1和等比数列: 的对应项的和构成的数列,故其前n项和Sn可转化为相应的两个已知数列的和,这里,观察通项结构,利用化归思想把未知转化为已知。
例14.设数列{an}的前n项和Sn=2an-1(n=1,2,…),数列{bn}满足b1=3,bk+1=ak+bk(k=1,2,…)求数列{bn}的前n项和。
[1996年全国高中数学联赛第二试第一题]
解:由Sn=2an-1,令n=1,得S1=a1=2a1-1,∴a1=1 ①
又Sn=2an-1 ②
Sn-1=2an-1-1 ③
②-③得:Sn-sn-1=2an-2an-1
∴an=2an-2an-1
故
∴数列{an}是以a1=1为首项,以q=2为公比的等比数列,故an=2n-1 ④
由⑤
∴以上诸式相加,得
注:本题综合应用了a1-s1,a3=Sn-Sn-1(n≥2)以及等差数列、等比数列求和公式以及叠加等方法,从基本知识出发,解决了较为复杂的问题。选准突破口,发现化归途径,源于对基础知识的深刻理念及其联系的把握。
例15.n2个正数排成n行n列
a11,a12,a13,a14,…,a1n
a21,a22,a23,a24,…,a2n
a31,a32,a33,a34,…,a3n
a41,a42,a43,a44,…,a4n
an1,an2,an3,an4,…,ann。
其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等。已知
[1990年全国高中数学联赛第一试第四题]
解:设第一行数列公差为d,纵行各数列公比为q,则原n行n列数表为:
故有:
②÷③得,代入①、②得④
因为表中均为正数,故q>0,∴,从而,因此,对于任意1≤k≤n,有
记S=a11+a22+a33+…+ann ⑤
⑥
⑤-⑥得:
即
评注:本题中求和,实为等差数列an=n与等比数列的对应项乘积构成的新数列的前n项的和,将⑤式两边同乘以公比,再错项相减,化归为等比数列求各。这种方法本是求等比数列前n项和的基本方法,它在解决此类问题中非常有用,应予掌握。课本P137复习参考题三B组题第6题为:求和:S=1+2x+3x2+…+nxn-1;2003年北京高考理工类第(16)题:已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,(I)求数列{an}的通项公式;(II)令bn=an·xn(x∈R),求数列{bn}的前n项和公式。都贯穿了“错项相减”方法的应用。
第二种:指数函数与对数函数 ————北京十二中 刘文武 指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。无论在高考及数学竞赛中,都具有重要地位。熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数的性质、图象及其相互关系,对学习好高中函数知识,意义重大。 一、 指数概念与对数概念: 指数的概念是由乘方概念推广而来的。相同因数相乘a·a……a(n个)=an导出乘方,这里的n为正整数。从初中开始,首先将n推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,在实数范围内建立起指数概念。 欧拉指出:“对数源出于指数”。一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N的对数,记作:logaN=b 其中a叫做对数的底数,N叫做真数。 ab=N与b=logaN是一对等价的式子,这里a是给定的不等于1的正常数。当给出b求N时,是指数运算,当给出N求b时,是对数运算。指数运算与对数运算互逆的运算。 二、指数运算与对数运算的性质 1.指数运算性质主要有3条: ax·ay=ax+y,(ax)y=axy,(ab)x=ax·bx(a>0,a≠1,b>0,b≠1) 2.对数运算法则(性质)也有3条: (1)loga(MN)=logaM+logaN (2)logaM/N=logaM-logaN (3)logaMn=nlogaM(n∈R) (a>0,a≠1,M>0,N>0) 3.指数运算与对数运算的关系: X=alogax;mlogan=nlogam 4.负数和零没有对数;1的对数是零,即 loga1=0;底的对数是1,即logaa=1 5.对数换底公式及其推论: 换底公式:logaN=logbN/logba 推论1:logamNn=(n/m)logaN 推论2: 三、指数函数与对数函数 函数y=ax(a>0,且a≠1)叫做指数函数。它的基本情况是: (1)定义域为全体实数(-∞,+∞) (2)值域为正实数(0,+∞),从而函数没有最大值与最小值,有下界,y>0 (3)对应关系为一一映射,从而存在反函数--对数函数。 (4)单调性是:当a>1时为增函数;当00,a≠1), f(x+y)=f(x)·f(y),f(x-y)=f(x)/f(y) 函数y=logax(a>0,且a≠1)叫做对数函数,它的基本情况是: (1)定义域为正实数(0,+∞) (2)值域为全体实数(-∞,+∞) (3)对应关系为一一映射,因而有反函数——指数函数。 (4)单调性是:当a>1时是增函数,当00,a≠1), f(x·y)=f(x)+f(y), f(x/y)=f(x)-f(y) 例1.若f(x)=(ax/(ax+√a)),求f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001) 分析:和式中共有1000项,显然逐项相加是不可取的。需找出f(x)的结构特征,发现规律,注意到1/1001+1000/1001=2/1001+999/1001=3/1001+998/1001=…=1, 而f(x)+f(1-x)=(ax/(ax+√a))+(a1-x/(a1-x+√a))=(ax/(ax+√a))+(a/(a+ax·√a))=(ax/(ax+√a))+((√a)/(ax+√a))=((ax+√a)/(ax+√a))=1规律找到了,这启示我们将和式配对结合后再相加: 原式=[f(1/1001)+f(1000/1001)]+[f(2/1001)+f(999/1001)]+…+[f(500/1001)+f(501/1001)]=(1+1+…+1)5000个=500 说明:观察比较,发现规律f(x)+f(1-x)=1是本例突破口。 (1)取a=4就是1986年的高中数学联赛填空题:设f(x)=(4x/(4x+2)),那么和式f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)的值= 。 (2)上题中取a=9,则f(x)=(9x/(9x+3)),和式值不变也可改变和式为求f(1/n)+f(2/n)+f(3/n)+…+f((n-1)/n). (3)设f(x)=(1/(2x+√2)),利用课本中推导等差数列前n项和的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为 。这就是2003年春季上海高考数学第12题。 例2.5log25等于:( ) (A)1/2 (B)(1/5)10log25 (C)10log45 (D)10log52 解:∵5log25=(10/2)log25=(10log25)/(2log25)=(1/5)×10log25 ∴选(B) 说明:这里用到了对数恒等式:alogaN=N(a>0,a≠1,N>0) 这是北京市1997年高中一年级数学竞赛试题。 例3.计算 解法1:先运用复合二次根式化简的配方法对真数作变形。 解法2:利用算术根基本性质对真数作变形,有 说明:乘法公式的恰当运用化难为易,化繁为简。 例4.试比较(122002+1)/(122003+1)与(122003+1)/(122004+1)的大小。 解:对于两个正数的大小,作商与1比较是常用的方法,记122003=a>0,则有 ((122002+1)/(122003+1))÷((122003+1)/(122004+1))=((a/12)+1)/(a+1)·((12a+1)/(a+1))=((a+12)(12a+1))/(12(a+1)2)=((12a2+145a+12)/(12a2+24a+12))>1 故得:((122002+1)/(122003+1))>((122003+1)/(122004+1)) 例5.已知(a,b为实数)且f(lglog310)=5,则f(lglg3)的值是( ) (A)-5 (B)-3 (C)3 (D)随a,b的取值而定 解:设lglog310=t,则lglg3=lg(1/log310)=-lglog310=-t 而f(t)+f(-t)= ∴f(-t)=8-f(t)=8-5=3 说明:由对数换底公式可推出logab·logba=(lgb/lga)·(lga/lgb)=1,即logab=(1/logba),因而lglog310与lglg3是一对相反数。设中的部分,则g(x)为奇函数,g(t)+g(-t)=0。这种整体处理的思想巧用了奇函数性质使问题得解,关键在于细致观察函数式结构特征及对数的恒等变形。
第三种:二次函数 二次函数是最简单的非线性函数之一,而且有着丰富内涵。在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。因此,必须透彻熟练地掌握二次函数的基本性质。 学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f (-b/2a+x)=f (-b/2a-x),x∈R),单调区间(-∞,-b/2a),[-b/2a,+∞]、极值((4ac-b2)/4a),判别式(Δb2-4ac)与X轴的位置关系(相交、相切、相离)等,全都与顶点有关。 一、“四个二次型”概述 在河南教育出版社出版的《漫谈ax2+bx+c》一书中(作者翟连林等),有如下一个“框图”: (一元)二次函数 y=ax2+bx+c (a≠0) → a=0 → (一元)一次函数 y=bx+c(b≠0) ↑ ↑ ↑ ↑ (一元)二次三项式 ax2+bx+c(a≠0) → a=0 → 一次二项式 bx+c(b≠0) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 一元二次方程 ax2+bx+c=0(a≠0) → a=0 → 一元一次方程 bx+c=0(b≠0) ↓ ↓ ↓ 一元二次不等式 ax2+bx+c>0或 ax2+bx+c<0(a≠0) → a=0 → 一元一次不等式 bx+c>0或 bx+c<0(b≠0) 观察这个框图,就会发现:在a≠0的条件下,从二次三项式出发,就可派生出一元二次函数,一元二次方程和一元二次不等式来。故将它们合称为“四个二次型”。其中二次三项式ax2+bx+c(a≠0)像一颗心脏一样,支配着整个“四个二次型”的运动脉络。而二次函数y=ax2+bx+c(a≠0),犹如“四个二次型”的首脑或统帅:它的定义域即自变量X的取值范围是全体实数,即n∈R;它的解析式f(x)即是二次三项式ax2+bx+c(a≠0);若y=0,即ax2+bx+c=0(a≠0),就是初中重点研究的一元二次方程;若y>0或y<0,即ax2+bx+c>0或ax2+bx+c<0(a≠0),就是高中一年级重点研究的一元二次不等式,它总揽全局,是“四个二次型”的灵魂。讨论零值的一元二次函数即一元二次方程是研究“四个二次型”的关键所在,它直接影响着两大主干:一元二次方程和一元二次不等式的求解。一元二次方程的根可看作二次函数的零点;一元二次不等式的解集可看作二次函数的正、负值区间。心脏、头脑、关键、主干、一句话,“四个二次型”联系密切,把握它们的相互联系、相互转化、相互利用,便于寻求规律,灵活运用,使学习事半功倍。 二、二次函数的解析式 上面提到,“四个二次型”的心脏是二次三项式:二次函数是通过其解析式来定义的(要特别注意二次项系数a≠0);二次函数的性质是通过其解析式来研究的。因此,掌握二次函数首先要会求解析式,进而才能用解析式去解决更多的问题。 Y=ax2+bx+c(a≠0)中有三个字母系数a、b、c,确定二次函数的解析式就是确定字母a、b、c的取值。三个未知数的确定需要3个独立的条件,其方法是待定系数法,依靠的是方程思想及解方程组。 二次函数有四种待定形式: 1.标准式(定义式):f(x)=ax2+bx+c.(a≠0) 2.顶点式: f(x)=a(x-h)2+k .(a≠0) 3.两根式(零点式):f(x)=a(x-x1)(x-x2). (a≠0) 4.三点式:(见罗增儒《高中数学竞赛辅导》) 过三点A(x1,f (x1))、B(x2,f (x2))、C(x3,f (x3))的二次函数可设为 f (x)=a1(x-x2)(x-x3)+a2(x-x1)(x-x3)+a3(x-x1)(x-x2)把ABC坐标依次代入,即令x=x1,x2,x3,得 f (x1)=a1(x1-x2)(x1-x3), f (x2)=a2(x2-x1)(x2-x3), f (x3)=a3(x3-x1)(x3-x2) 解之,得:a1=f (x1)/ (x1-x2)(x1-x3),a2=f (x2)/ (x2-x1)(x2-x3),a3=f (x3)/ (x3-x1)(x3-x2) 从而得二次函数的三点式为:f(x)=[f(x1)/(x1-x2)](x1-x3)(x-x2)(x-x3)+[f(x2)/ (x2-x1)(x2-x3)](x-x1)(x-x3)+[f(x3)/(x3-x1)(x3-x2)](x-x1)(x-x2)根据题目所给的不同条件,灵活地选用上述四种形式求解二次函数解析式,将会得心应手。
2017高考数学选修没涂,我做的第一题,会怎么样
考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!
高考文科数学考点总结第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。
第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联络比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含引数。
湖南高考文科数学考点一:直线方程
1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.
注:①当或时,直线垂直于轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.
3. ⑴两条直线平行:
∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且
推论:如果两条直线的倾斜角为则∥.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件
4. 直线的交角:
⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.
⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
5. 过两直线的交点的直线系方程为引数,不包括在内
湖南高考文科数学考点二:轨迹方程
一、求动点的轨迹方程的基本步骤
⒈建立适当的座标系,设出动点M的座标;
⒉写出点M的 *** ;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。
⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
湖南高考文科数学考点三:导数
一、函式的单调性
在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.
f′x≥0?fx在a,b上为增函式.
f′x≤0?fx在a,b上为减函式.
二、函式的极值
1、函式的极小值:
函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.
2、函式的极大值:
函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.
极小值点,极大值点统称为极值点,极大值和极小值统称为极值.
三、函式的最值
1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.
2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.
四、求可导函式单调区间的一般步骤和方法
1、确定函式fx的定义域;
2、求f′x,令f′x=0,求出它在定义域内的一切实数根;
3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;
4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.
湖南高考文科数学考点四:不等式
1理解不等式的性质及其证明。
导读
不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:
加强化归意识,把比较大小问题转化为实数的运算;
通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;
强化函式的性质在大小比较中的重要作用,加强知识间的联络;
不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a
一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;
对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;
对于含参问题的大小比较要注意分类讨论。
2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
导读
1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。
2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。
3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。
3掌握分析法、综合法、比较法证明的简单不等式。
导读
1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。
2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。
3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。
湖南高考文科数学考点五:几何
1棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
4圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
7球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:
高考数学答题要注意的问题
如果是答题卡没有标明题号可以举手问监考老师是不是答题卡有问题,如果是自己没有选择题没有涂卡,那就不会得分。因为现在都是使用电脑阅卷,电脑扫描出来发现没有做题,自然不会给分。
高考时考生得到试卷(卡)后,考生须立即核对试卷(卡)是否当堂考试科目,清点试卷的张数、页码,检查试题有无漏印、字迹不清或试卷(卡)有无破损,发现上述问题应立即向监考员报告。
高考规定试题均在答题卡上作答,考生在得到答题卡后,须仔细阅读答题卡上的注意事项;考生须在答题卡的规定区域用0.5毫米黑色墨迹签字笔填写姓名、准考证号和座位号,并在答题卡背面左上角用2B铅笔填涂自己的座位号。
扩展资料:
高考注意事项
1、答题卡的排列顺序是:按座位号的顺序小号在上,大号在下排列,点名卡放在答题卡上面,多余的答题卡放在后面。
2、整理答题卡时,需将每张答题卡的截切线对齐,即检查答题卡左上角的缺角是否对齐。答题卡按要求顺好号后,放进答题卡袋,经验卷员验收合格后,再在答题卡袋贴上封条(监考员必须在试室密封答题卡袋)。
3、对漏收答题卡的处理要求
严禁漏收答题卡。对漏收的答题卡,省考试中心一概不给予承认,作缺考处理,并追究监考员责任。
导语:距离2017年高考只剩下不到两个礼拜的时间了,在此我先预祝各位高考学子稳定发挥,乃至超长发挥,考出自己满意的分数,此外,我也为大家分享高考数学答题我们必须注意的一些问题,希望对大家有帮助。
2017高考数学答题要注意的问题
1.答题工具:
答选择题时,必须用合格的2B铅笔填涂,如需要对答案进行修改,应使用绘图橡皮轻擦干净,注意不要擦破答题卡。禁止使用涂改液、修正带或透明胶带改错。必须用0.5毫米黑色墨水签字笔作答,作图题可先用铅笔绘出,确认后,再用0.5毫米黑色墨水签字笔描清楚。
2.答题规则与程序:
①先填空题,再做解答题。②先填涂再解答。③先易后难。
3.答题位置:
按题号在指定的答题区域内作答,如需对答案进行修改,可将需修改的内容划去,然后紧挨在其上方或其下方写出新的答案,修改部分在书写时与正文一样,不能超出该题答题区域的黑色矩形边框,否则修改的答案无效。
4.解题过程及书写格式要求:
《考试说明》中对选择填空题提出的要求是?正确、合理、迅速?,因此,解答的基本策略是:
快?运算要快,力戒小题大做;
稳?变形要稳,防止操之过急;
全?答案要全,避免对而不全;
活?解题要活,不要生搬硬套;
细?审题要细,不能粗心大意。
关于填空题,常见的错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。
关于解答题,考生不仅要提供出最后的结论,还得写出主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,而且所填结果应力求简练、概括的准确;其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。
在答题过程中,关键语句和关键词是否答出是多得分的`关键,如何答题才更规范?答题过程要整洁美观、逻辑思路清晰、概念表达准确、答出关键语句和关键词。比如要将你的解题过程转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生忽视。因此,卷面上大量出现?会而不对?对而不全?的情况。
如立体几何论证中的?跳步?,使很多人丢失得分,代数论证中的?以图代证?,尽管解题思路正确甚至很巧妙,但是由于不善于把?图形语言?准确地转换为?文字语言?,尽管考生?心中有数?却说不清楚,因此得分少,只有重视解题过程的语言表述,?会做?的题才能?得分?。对容易题要详写,过程复杂的试题要简写,答题时要会把握得分点。
5.常见的规范性的问题:
解与解集:方程的结果一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示,三角方程的通解中必须加 ;在写区间或集合时,要正确地书写圆括号、方括号或花括号,区间的两端点之间,几何的元素之间用逗号隔开。
带单位的计算题或应用题,最后结果必须带单位,特别是应用题解题结束后一定要写符合题意的?答?。分类讨论题,一般要写综合性结论。任何结果要最简。排列组合题,无特别声明,要求出数值。函数问题一般要注明定义域(特别是反函数)
6.答题规范化的训练:
要养成良好的答题习惯,做到解题的规范性,需要从点滴做起,重在平时,坚持不懈,养成习惯,做好以下几点:
①平时作业要落实;
②测试考试看效果;
③评分标准做借鉴。