您现在的位置是: 首页 > 分数线 分数线
理科高考试题数学_理科高考数学真题
tamoadmin 2024-05-15 人已围观
简介2009年广东高考数学理科试题和答案2009-06-13 13:08一、 选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.巳知全集 ,集合 和 的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有A.3个 B.2个C.1个
2009年广东高考数学理科试题和答案2009-06-13 13:08一、 选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.巳知全集 ,集合 和 的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有
A.3个 B.2个
C.1个 D.无穷个
2.设 是复数, 表示满足 的最小正整数 ,则对虚数单位 ,
A.8 B.6 C.4 D.2
3.若函数 是函数 的反函数,其图像经过点 ,则
A. B. C. D.
4.已知等比数列 满足 ,且 ,则当 时,
A. B. C. D.
5.给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是
A.①和② B.②和③ C..③和④ D.②和④
6.一质点受到平面上的三个力 (单位:牛顿)的作用而处于平衡状态.已知 成 角,且 的大小分别为2和4,则 的大小为
A.6 B.2 C. D.
7.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有
A.36种 B.12种 C.18种 D.48种
8.已知甲、乙两车由同一起点同时出发,并沿同一路线〈假定为直线)行驶.甲车、乙车的速度曲线分别为 (如图2所示).那么对于图中给定的 ,下列判断中一定正确的是
A.在 时刻,甲车在乙车前面
B. 时刻后,甲车在乙车后面
C.在 时刻,两车的位置相同
D. 时刻后,乙车在甲车前面
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.
(一)必做题(9~12题)
9.随机抽取某产品 件,测得其长度分别为 ,则图3所示的程序框图输出的 ,s表示的样本的数字特征是 .(注:框图中的赋值符号“=”也可以写成“←”“:=”)
10.若平面向量 满足 , 平行于 轴, ,则 .
11.巳知椭圆 的中心在坐标原点,长轴在 轴上,离心率为 ,且 上一点到 的两个焦点的距离之和为12,则椭圆 的方程为 .
12.已知离散型随机变量 的分布列如右表.若 , ,则 , .
(二)选做题(13 ~ 15题,考生只能从中选做两题)
13.(坐标系与参数方程选做题)若直线 与直线 ( 为参数)垂直,则 .
14.(不等式选讲选做题)不等式 的实数解为 .
15.(几何证明选讲选做题)如图4,点 是圆 上的点, 且 ,则圆 的面积等于 .
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤,
16.(本小题满分12分)
已知向量 互相垂直,其中 .
(1)求 的值;
(2)若 ,求 的值.
17.(本小题满分12分)
根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间 进行分组,得到频率分布直方图如图5
(1)求直方图中 的值;
(2)计算一年屮空气质量分别为良和轻微污染的天数;
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.已知
)
18.(本小题满分14分)
如图6,已知正方体 的棱长为2,点E是正方形 的中心,点F、G分别是棱 的中点.设点 分别是点E,G在平面 内的正投影.
(1)求以E为顶点,以四边形 在平面 内的正投影为底面边界的棱锥的体积;
(2)证明:直线 ;
(3)求异面直线 所成角的正统值
19.(本小题满分14分)
已知曲线 与直线 交于两点 和 ,且 .记曲线 在点 和点 之间那一段 与线段 所围成的平面区域(含边界)为 .设点 是 上的任一点,且点 与点 和点 均不重合.
(1)若点 是线段 的中点,试求线段 的中点 的轨迹方程;
(2)若曲线 与点 有公共点,试求 的最小值.
20.(本小题满分14分)
已知二次函数 的导函数的图像与直线 平行,且 在 处取得极小值 .设 .
(1)若曲线 上的点 到点 的距离的最小值为 ,求 的值;
(2) 如何取值时,函数 存在零点,并求出零点.
21.(本小题满分14分)
已知曲线 .从点 向曲线 引斜率为 的切线 ,切点为 .
(1)求数列 的通项公式;
(2)证明:
答案http://news.xinhuanet.com/edu/2009-06/09/content_11512743.htm没办法,都是你说的垃圾答案,要不自己看http://forum.evermoresw.com/thread-34547-1-1.html (要完整的只能上网下载word试题,要不很难找到符合你要求的)