您现在的位置是: 首页 > 录取信息 录取信息
正余弦定理高考_正余弦定理高考典型题
tamoadmin 2024-05-18 人已围观
简介正弦定理公式是:a/sina=b/sinb=c/sinc=2R。正弦值是在直角三角形中,对边的长比上斜边的长的值。任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。通常用符号sin表示。正弦sinθ也可以理解为顶角度数为θ的单位等腰三角形与单位等腰直角三角形的面积之比。sin30=1╱2sin45=2╱2sin60=3╱2sin90=1sin180=0sin0=0sin2
正弦定理公式是:a/sina=b/sinb=c/sinc=2R。
正弦值是在直角三角形中,对边的长比上斜边的长的值。任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。
通常用符号sin表示。正弦sinθ也可以理解为顶角度数为θ的单位等腰三角形与单位等腰直角三角形的面积之比。
sin30°=1╱2
sin45°=√2╱2
sin60°=√3╱2
sin90°=1
sin180°=0
sin0°=0
sin270°=-1
诱导公式
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
由正弦定理得:sinA=a/2R、sinB=b/2R、c=sinC/2R。
所以,a=(b+c)/(cosB+cosC)
即acosB+acosC=b+c
由余弦定理得:
acosB=(a^2+c^2-b^2)/(2c)
acosC=(a^2+b^2-c^2)/(2b)
(a^2+c^2-b^2)/(2c)+(a^2+b^2-c^2)/(2b)=b+c
a^2b+bc^2-b^3+a^2c+b^2c-c^3=2b^2c+2bc^2
a^2b-bc^2-b^3+a^2c-b^2c-c^3=0
a^2(b+c)-bc(b+c)-(b+c)(b^2-bc+c^2)=0
(b+c)(a^2-bc-b^2-c^2+bc)=0
a^2-b^2-c^2=0
b^2+c^2=a^2
所以,三角形ABC为直角三角形。
上一篇:为什么高考难度大,为什么高考很难
下一篇:江苏高考恶搞,变态的江苏高考