您现在的位置是: 首页 > 录取信息 录取信息
高考理科数学题倒数大题-高考理科数学17题
tamoadmin 2024-08-24 人已围观
简介1.2006上海高考数学试题答案理科2.请教~帮帮忙!~~2011安徽高考理科数学17题第一问(几何),我的方法对不对?!3.四川高考理科数学试卷难不难,难度系数点评答案解析2006上海高考数学试题答案理科上海数学(理工农医类)参考答案一、(第1题至笫12题)1. 1 2. 3. 4. 5. -1+i 6. 7. 8. 5 9. 10. 3
1.2006上海高考数学试题答案理科
2.请教~帮帮忙!~~2011安徽高考理科数学17题第一问(几何),我的方法对不对?!
3.四川高考理科数学试卷难不难,难度系数点评答案解析
2006上海高考数学试题答案理科
上海数学(理工农医类)参考答案
一、(第1题至笫12题)
1. 1 2. 3. 4. 5. -1+i 6. 7.
8. 5 9. 10. 36 11. k=0,-1<b<1 12. a≤10
二、(第13题至笫16题)
13. C 14. A 15. A 16. D
三、(第17题至笫22题)
17.解:y=cos(x+ ) cos(x- )+ sin2x
=cos2x+ sin2x=2sin(2x+ )
∴函数y=cos(x+ ) cos(x- )+ sin2x的值域是[-2,2],最小正周期是π.
18.解:连接BC,由余弦定理得BC2=202+102-2×20×10COS120°=700.
于是,BC=10 .
∵ , ∴sin∠ACB= ,
∵∠ACB<90° ∴∠ACB=41°
∴乙船应朝北偏东71°方向沿直线前往B处救援.
19.解:(1) 在四棱锥P-ABCD中,由PO⊥平面ABCD,得
∠PBO是PB与平面ABCD所成的角, ∠PBO=60°.
在Rt△AOB中BO=ABsin30°=1, 由PO⊥BO,
于是,PO=BOtg60°= ,而底面菱形的面积为2 .
∴四棱锥P-ABCD的体积V= ×2 × =2.
(2)解法一:以O为坐标原点,射线OB、OC、OP分别为x轴、y轴、z轴的正半轴建立空间直角坐标系.
在Rt△AOB中OA= ,于是,点A、B、D、P的坐标分别是A(0,- ,0),
B(1,0,0),D(-1,0,0)P(0,0, ).
E是PB的中点,则E( ,0, ) 于是 =( ,0, ), =(0, , ).
设 的夹角为θ,有cosθ= ,θ=arccos ,
∴异面直线DE与PA所成角的大小是arccos .
解法二:取AB的中点F,连接EF、DF.
由E是PB的中点,得EF‖PA,
∴∠FED是异面直线DE与PA所成角(或它的补角).
在Rt△AOB中AO=ABcos30°= =OP,
于是, 在等腰Rt△POA中,PA= ,则EF= .
在正△ABD和正△PBD中,DE=DF= .
cos∠FED= =
∴异面直线DE与PA所成角的大小是arccos .
20.证明:(1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x12,y2).
当直线l的钭率下存在时,直线l的方程为x=3,此时,直线l与抛物线相交于点A(3, )、B(3,- ).∴ =3
当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0.
当 y2=2x
得ky2-2y-6k=0,则y1y2=-6.
y=k(x-3)
又∵x1= y , x2= y ,
∴ =x1x2+y1y2= =3.
综上所述, 命题“如果直线l过点T(3,0),那么 =3”是真命题.
(2)逆命题是:设直线l交抛物线y2=2x于A、B两点,如果 =3,那么该直线过点T(3,0).该命题是命题.
例如:取抛物线上的点A(2,2),B( ,1),此时 =3,
直线AB的方程为Y= (X+1),而T(3,0)不在直线AB上.
说明:由抛物线y2=2x上的点A(x1,y1)、B(x12,y2)满足 =3,可得y1y2=-6.
或y1y2=2,如果y1y2=-6.,可证得直线AB过点(3,0);如果y1y2=2, 可证得直线AB过点(-1,0),而不过点(3,0).
21.证明(1)当n=1时,a2=2a,则 =a;
2≤n≤2k-1时, an+1=(a-1) Sn+2, an=(a-1) Sn-1+2,
an+1-an=(a-1) an, ∴ =a, ∴数列{an}是等比数列.
解(2)由(1)得an=2a , ∴a1a2…an=2 a =2 a =a ,
bn= (n=1,2,…,2k).
(3)设bn≤ ,解得n≤k+ ,又n是正整数,于是当n≤k时, bn< ;
当n≥k+1时, bn> .
原式=( -b1)+( -b2)+…+( -bk)+(bk+1- )+…+(b2k- )
=(bk+1+…+b2k)-(b1+…+bk)
= = .
当 ≤4,得k2-8k+4≤0, 4-2 ≤k≤4+2 ,又k≥2,
∴当k=2,3,4,5,6,7时,原不等式成立.
22.解(1) 函数y=x+ (x>0)的最小值是2 ,则2 =6, ∴b=log29.
(2)设0<x1<x2,y2-y1= .
当 <x1<x2时, y2>y1, 函数y= 在[ ,+∞)上是增函数;
当0<x1<x2< 时y2<y1, 函数y= 在(0, ]上是减函数.
又y= 是偶函数,于是,该函数在(-∞,- ]上是减函数, 在[- ,0)上是增函数.
(3)可以把函数推广为y= (常数a>0),其中n是正整数.
当n是奇数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是增函数, 在[- ,0)上是减函数.
当n是偶数时,函数y= 在(0, ]上是减函数,在[ ,+∞) 上是增函数,
在(-∞,- ]上是减函数, 在[- ,0)上是增函数.
F(x)= +
=
因此F(x) 在 [ ,1]上是减函数,在[1,2]上是增函数.
所以,当x= 或x=2时, F(x)取得最大值( )n+( )n;
当x=1时F(x)取得最小值2n+1.
图画不到。
请教~帮帮忙!~~2011安徽高考理科数学17题第一问(几何),我的方法对不对?!
如果是你的方法一定要证明BCFE四点共面
但是你可以利用中位线解决~先延长DA,EB于G,则三角形OAB,ODE是正三角形,OG=OD=2再延长DA,FC于H,得OH=OD=2可证G,H重合.在三角形GED,GFD中B,C为GE,GF中点,所以BC是三角形GEF中位线,,所以BC//EF
四川高考理科数学试卷难不难,难度系数点评答案解析
四川高考理科数学试卷难不难,难度系数点评答案解析
普通高考理科数学(四川卷)依然遵循《考试大纲》及《考试说明(四川卷)》要求,保持了近几年的四川卷命题风格,在题型、题量、难度方面保持了相对稳定,立足现行教材,回归数学本质,重视基础知识、基本技能的考查,强调通性通法,注重能力立意,命题命制立足学科主干知识,将知识、方法、能力的考查融为一体,通过适度联系与综合等方式,在知识交汇处考查学生的数学思维方法和能力,同时试题在稳定中追求创新,有利于考查学生的数学素养与学习潜能,整个试卷布局合理,难度适中,有较好区分度,无偏题、怪题,有利于科学选拨人才,维护社会公平与稳定。
一.注重基础,加强创新、突出重难点思维方法
纵观高考试题,突出体现在基础与创新:四川高考试题在延续过去几年命题特点的基础上,加大了创新能力、数学思想方法的考查。在题型、题量和难度上保持了相对稳定,避免大起大落。选择填空试题叙述简练,侧重考查基础,如理科第1,2,3,4,5,7,8题,直接来自教材习题或改编,中等程度学生能快速解答;试题命制贴近生活,如第12题,以生活中的食品问题为背景考查对数,第17题以辩论赛为背景,考查概率统计的应用;解答题较往年更改了题目顺序,依次是数列、概率统计、立体几何、三角、解析几何与函数导数,这个变化可能让大多数同学措手不及。同时适度强化了不同模块之间的联系与综合,如数列大题将数列与不等式的应用结合在一起,加强了综合能力的考查。
知识模块 函数与导数 平面向量与三角函数 数列与不等式 立体几何 解析几何 计数原理与概率统计 总计 2013 24 27 17 17 18 17 120 2014 29 27 17 17 23 12 125 2015 29 27 12 17 23 17 125
通过上表可以看出,四川高考数学试题非常注重对学科主干知识的重点考查。
二.知识素材、情境都有创新,注重探究
同时部分试题在素材选择、情景设置和设问方式上相比往年有所创新,考查学生的探究意识,应用意识和创新意识,如第10、20等题需要考生根据问题设计的情景,从特殊到一般,从形象到抽象进行不同侧面的探究,第21题也考查学生的应用意识和创新意识,对考生综合与灵活运用所学数学知识、思想方法,进行独立思考分析,创造性的解决问题有较高且合理的要求。
第20题解析几何大题总体来说命题风格与往年差距较大,此题需要学生有探究猜想的能力,先通过特殊直线将点找出来,再去证明。并且更注重了代数与几何综合的考查,如果能发现此比例关系是角平分线定理,那么求解起来会相当轻松。这种解题思路的变化可能对很多考生来说难以适应。
第21题展现了数学学科的抽象性和科学性,和最后一题类似,考查2阶导数和分类讨论,解答时需要考生借助图象直观发现解题思路和结论,用严谨的逻辑推理进行证明,整个解答过程经历“画图——观察——探究——发现——证明”的过程,这些试题立意新颖,背景深刻,情境生动,设问巧妙,能很好的考查学生理性思维的广度与深度,考查学生的数学学习潜能。
总之,四川省高考数学试题充分考虑四川考生特点,紧扣考试大纲,立足教材,在考查基础知识的同时,重视考查能力,追求创新意识,从来看,尤其是注重学习数学过程中的探究。试卷布局合理,难度较更难,有一定区分度,称得上是一份质量上乘的试卷,对促进课程改革也有良好的导向作用。
最后,学而思高考研究中心祝愿高考学子能够取得优异的成绩,走进理想的大学。同时,对于决战高考学子来说,暑开始准备一轮复习,祝愿新高三学子能够经历高三一年风雨,在这个暑开始为高考打下坚实的基础,在高考中取得理想的成绩。
赵武俊:学而思高考研究中心数学研究员。高考数学143分,以665分考入 北京大学 ,学而思自主招生班主带老师。上课风趣、条理清晰,擅长用朴素的语言阐释高中数学。
陈渝:学而思高考研究中心数学研究员,高中数学联赛一等奖,考入 北京大学 数学系。