您现在的位置是: 首页 > 录取信息 录取信息

高考函数大题真题及答案,高考函数大题真题

tamoadmin 2024-06-07 人已围观

简介1.一道高三的数学题 函数问题 数学高手进1、证明函数的区间单调性,即证明函数为单调函数;2、证明在单调区间上存在f(x?)·f(x?)<0,x?不等于x?,即函数在此区间有一个零点;3、综上所述,函数在区间上单调+有一个零点,得函数f(x)在此区间有且只有一个零点。一般地,对于函数y=f(x)(x∈R),我们把方程f(x)=0的实数根x叫作函数y=f(x)(x∈R)的零点(the zero

1.一道高三的数学题 函数问题 数学高手进

高考函数大题真题及答案,高考函数大题真题

1、证明函数的区间单调性,即证明函数为单调函数;

2、证明在单调区间上存在f(x?)·f(x?)<0,x?不等于x?,即函数在此区间有一个零点;

3、综上所述,函数在区间上单调+有一个零点,得函数f(x)在此区间有且只有一个零点。

一般地,对于函数y=f(x)(x∈R),我们把方程f(x)=0的实数根x叫作函数y=f(x)(x∈R)的零点(the zero of the function)。即函数的零点就是使函数值为0的自变量的值。函数的零点不是一个点,而是一个实数。

扩展资料:

若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号不同,即f(a)·f(b)≤0,则在区间[a,b]内,函数y=f(x)至少有一个零点,即相应的方程f(x)=0在区间[a,b]内至少有一个实数解。

一般结论:函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图像与x轴(直线y=0)交点的横坐标,所以方程f(x)=0有实数根,推出函数y=f(x)的图像与x轴有交点,推出函数y=f(x)有零点。

更一般的结论:函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)的图像与函数y=g(x)的图像交点的横坐标,这个结论很有用。

一道高三的数学题 函数问题 数学高手进

17.(12分)

△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为

(1)求sinBsinC;

(2)若6cosBcosC=1,a=3,求△ABC的周长

18.(12分)

如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.

19.(12分)

为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).

(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网

(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.

(ⅰ)试说明上述监控生产过程方法的合理性;

(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:

9.95

10.12

9.96

9.96

10.01

9.92

9.98

10.04

10.26

9.91

10.13

10.02

9.22

10.04

10.05

9.95

经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.

用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).

附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.

20.(12分)

已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

21.(12分)

已知函数=ae?^x+(a﹣2)e^x﹣x.

(1)?讨论的单调性;

(2)?若有两个零点,求a的取值范围.

(二)选考题:共10分。

请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。

22.[选修4-4,坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.

(1)若a=-1,求C与l的交点坐标;

(2)若C上的点到l的距离的最大值为,求a.

23.[选修4—5:不等式选讲](10分)

已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.

(1)当a=1时,求不等式f(x)≥g(x)的解集;

(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.

讲解(纯手打,解题步骤,可参照之前那位网友的):

(1)这一问是一个恒成立问题,对于恒成立问题,一般是要求出最值的,题中说:

f(x)≥0恒成立,这就说明在函数定义域内,f(x)的最小值要大于或等于0,相对的如果题目说f(x)≤0,则说明函数最大值要小于或等于0,那么问题就转化成求函数最值的问题,由于高中所学的函数全是初等函数,所以在定义域内一定可导,所以只要在定义域内你大可放心去求导,进而去求极值,本题只有极小值,所以也是最小值(如果有极大值又有极小值,或者含有边界值,则要根据题意,比较出一个最大值或是最小值),求出的极小值是,当x=lna时,f(x)为极小值,即f(lna)≥0,解出a≤1,则a最大值为1

(2)这一问仍然是恒成立问题,所以仍然需要求最值,由斜率问题联想到导数,写出AB斜率的表达式,并且代入g(x)表达式,式子,就是答案里的式子(答案中的式子,其实是拉格朗日中值定理的变形,因为高中不学这个定理),把式子变形得到,g(x2)-mx2 > g(x1)-mx1, 到这问题的核心就出现了! 由AB斜率大于m恒成立,将这个条件转化为g(x2)-mx2 > g(x1)-mx1恒成立,这两个式子在题目所给的条件下是等价的,所以你解出g(x2)-mx2 > g(x1)-mx1,也就解出了原题。

现在就是对g(x2)-mx2 > g(x1)-mx1这类式子的处理了,这类式子的共同特点就不等号左右两边的表达式的形式是一样的,那么遇到这种证明恒成立的问题,你可以向这个方面考虑,具体方法就是:令一个函数F(x)=不等号一边的式子,将X1或X2改成x,本题就是F(x)=g(x)-mx,而一般遇到X1≠X2,则可以直接令X1>X2,或X1<X2,这样就转化成F(X1)与F(X2),比较大小的问题了,那么对于函数在不同点的大小问题可以用函数的单调性来解答,进而去判断F(X)的单调性,很自然地就是求导,在这时,你如果是令X2>X1,那么F(X)就是单调增函数(对于本题而言),那么解答就如答案所示,如果你令X2<X1,那么F(X)就是单调递减,则解出m≥g'(x),因为g'(x)≥3,那么是无法定出m的准确取值范围,所以舍去。

综上只有F(X)单调递增时,m的范围可以确定,那么顺着这个思路往下解,用一次基本不等式,然后定出m的范围即可。

(3)遇到这种题目,你先看给出的问题能否变形,因为题目如果想出的难一点,是不会直接提出问题的核心的,需要自己去观察,然后找到核心问题,本题,不等式右边明显有个(2n)^n,这和左边的形式相同,所以先变形,把式子化成(1/2n)^n+(3/2n)^n+……+((2n-1)/2n)^n<√e/(e-1),而此时全看你能不能想到用第一问的条件,用的话,这相当于让你有依据去放缩,否则直接放缩很难证到题目所要的结果,此时就可以按照答案所示的方法,令X=(如答案所示),其实,你可以把a带着,就是e^x≥a(x+1),求到最后,你会发现,如果要满足题意,a就是1,答案那样写的话,就相当于直接告诉你a=1。这种题一般是连在题目的最后一问,如果遇到,就往上找,看能不能用已经证出的条件来解答,能想到,基本就能做出来。这问最后不等号右边是等比数列求和,自己算一下就行了。

给你提条建议,把这类题目整理出来,从中归纳解题的技巧,如找相同的特点,相同的形式,或是类似的问法,然后自己总结成适合自己的理解方式,再加以做题巩固就行了。

纯手打,记得采纳哦~

文章标签: # 函数 # 问题 # 就是