您现在的位置是: 首页 > 录取信息 录取信息
高考函数经典题1000道及答案,函数高考真题
tamoadmin 2024-05-29 人已围观
简介1.高1函数解题方法的名称+例题2.很难很那数学题!?已知定义在R上的奇函数f(x)满足f(x)=-f(x-2)3.高考数学问题:设f(x)是定义在R上的一个减函数(一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围
1.高1函数解题方法的名称+例题
2.很难很那数学题!?已知定义在R上的奇函数f(x)满足f(x)=-f(x-2)
3.高考数学问题:设f(x)是定义在R上的一个减函数
(一)求函数的解析式
1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0;
2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;
3、求函数解析式的一般方法有:
(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;
(3)换元法:若给出了复合函数f〔g(x)〕的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;
(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;
(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。(二)求函数定义域
1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;
2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;
3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;
4、对复合函数y=f〔g(x)〕的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;
5、分段函数的定义域是各个区间的并集;
6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;
7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域
1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;
2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”;
3、分段函数的值域是各个区间上值域的并集;
4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;
5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;
6、求函数值域的方法十分丰富,应注意总结;(四)求函数的最值
1、设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(xo)=M,则称当x=xo时f(x)取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N;
2、求函数的最值问题可以化归为求函数的值域问题;
3、闭区间的连续函数必有最值。典型例题
考点一:求函数解析式
1、直接法:由题给条件可以直接寻找或构造变量之间的联系。
例1.已知函数y=f(x)满足xy<0,4x2-9y2=36,求该函数解析式。
解:由4x2-9y2=36可解得:
说明:这是一个分段函数,必须分区间写解析式,不可以写成的形式。2、待定系数法:由题给条件可以明确函数的类型,从而可以设出该类型的函数的一般式,然后再求出各个参变量的值。
例2.已知在一定条件下,某段河流的水流量y与该段河流的平均深度x成反比,又测得该段河流某段平均水深为2m时,水流量为340m3/s,试求该段河流水流量与平均深度的函数关系式。
解:设,代入x,y的值可求得反比例系数k=780m3/s,故所求函数关系式为。3、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。
例3.已知,试求。
解:设,则,代入条件式可得:,t≠1。故得:。
说明:要注意转换后变量范围的变化,必须确保等价变形。4、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。
例4.(1)已知,试求;
(2)已知,试求;
解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。
(2)由条件式,以-x代x则得:,与条件式联立,消去,则得:。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。5、实际问题中的函数解析式:这是高考的一个热点题型,一般难度不大,所涉及知识点也不多,关键是合理设置变量,建立等量关系。
例5.动点P从边长为1的正方形ABCD的顶点B出发,顺次经过C、D再到A停止。设x表示P行驶的路程,y表示PA的长,求y关于x的函数。
解:由题意知:当x∈〔0,1〕时:y=x;
当x∈(1,2)时:;
当x∈(2,3)时:;
故综上所述,有考点二:求函数定义域
1、由函数解析式求函数定义域:由于解析式中不同的位置决定了变量不同的范围,所以解题时要认真分析变量所在的位置;最后往往是通过解不等式组确定自变量的取值集合。
例6.求的定义域。
解:由题意知:,从而解得:x-2且x≠±4.故所求定义域为:
{x|x-2且x≠±4}。2、求分段函数的定义域:对各个区间求并集。
例7.已知函数由下表给出,求其定义域
X
1
2
3
4
5
6
Y
22
3
14
35
-6
17
解:{1,2,3,4,5,6}。3、求与复合函数有关的定义域:由外函数f(u)的定义域可以确定内函数g(x)的范围,从而解得x∈I1,又由g(x)定义域可以解得x∈I2.则I1∩I2即为该复合函数的定义域。也可先求出复合函数的表达式后再行求解。
解:
又由于x2-4x+30**
联立*、**两式可解得:例9.若函数f(2x)的定义域是〔-1,1〕,求f(log2x)的定义域。
解:由f(2x)的定义域是〔-1,1〕可知:2-1≤2x≤2,所以f(x)的定义域为〔2-1,2〕,故log2x∈〔2-1,2〕,解得,故定义域为。4、求解含参数的函数的定义域:一般地,须对参数进行分类讨论,所求定义域随参数取值的不同而不同。
例10.求函数的定义域。
解:若,则x∈R;
若,则;
若,则;
故所求函数的定义域:
当时为R,当时为,当时为。
说明:此处求定义域是对参变量a进行分类讨论,最后叙述结论时不可将分类讨论的结果写成并集的形式,必须根据a的不同取值范围分别论述。考点三:求函数的值域与最值
求函数的值域和最值的方法十分丰富,下面通过例题来探究一些常用的方法;随着高中学习的深入,我们将学习到更多的求函数值域与最值的方法。
1、分离变量法
例11.求函数的值域。
解:,因为,故y≠2,所以值域为{y|y≠2}。
说明:这是一个分式函数,分子、分母均含有自变量x,可通过等价变形,让变量只出现在分母中,再行求解。2、配方法
例12.求函数y=2x2+4x的值域。
解:y=2x2+4x=2(x2+2x+1)-2=2(x+1)2-2≥-2,故值域为{y|y≥-2}。
说明:这是一个二次函数,可通过配方的方法来求得函数的值域。类似的,对于可以化为二次函数的函数的值域也可采用此方法求解,如y=af2(x)+bf(x)+c。3、判别式法
例13.求函数的值域。
解:可变形为:(4y-1)x2+(5y-2)x+6y-3=0,由Δ≥0可解得:。
说明:对分子分母最高次数为二次的分式函数的值域求解,可以考虑采用此法。要注意两点:第一,其定义域一般仅由函数式确定,题中条件不再另外给出;如果题中条件另外给出了定义域,那么一般情况下就不能用此法求解值域;第二,用判别式法求解函数值域的理论依据是函数的定义域为非空数集,所以将原函数变形为一个关于x的一元二次方程后,该方程的解集就是原函数的定义域,故Δ≥0。4、单调性法
例14.求函数,x∈〔4,5〕的值域。
解:由于函数为增函数,故当x=4时,ymin=;当x=5时,ymax=,所以函数的值域为。5、换元法
例15.求函数的值域。
解:令,则y=-2t2+4t+2=-(t-1)2+4,t≥0,故所求值域为{y|y≤4}。6、分段函数的值域:应为各区间段上值域的并集。
例16.求函数的值域。
解:当x∈〔1,2〕时,y∈〔1,2〕;当x∈2,3〕时,y∈4,9〕;当x∈3,4〕时,y∈5,7〕。综上所述,y∈〔1,2〕∪3,9〕。〔本讲所涉及的主要数学思想方法〕
1、分类讨论的数学思想:对含有参变量的函数定义域、值域及最值的求解,一般情况下都要对参变量进行分类讨论,在参变量不同的取值范围内进行求解。要特别注意对结果的表述。
2、换元的思想:对复合函数定义域、值域及最值的求解,以及对某些无理函数(根号中含有自变量的函数)的处理,通常可以考虑换元,以达到化繁为简的目的。
3、方程的思想:对某些函数解析式的求解,以及某些函数值的求解,均渗透了方程的思想,主要思路是改变原来的变量之间的角色,重新确定主元,依此主元构造方程进行求解。模拟试题
一.选择题
1、函数y=f(x)的值域是〔-2,2〕,则函数y=f(x+1)的值域是()
A.〔-1,3〕B.〔-3,1〕C.〔-2,2〕D.〔-1,1〕
2、已知函数f(x)=x2-2x,则函数f(x)在区间〔-2,2〕上的最大值为()
A.2B.4C.6D.8
3、一等腰三角形的周长为20,底边长y是关于腰长x的函数,那么其解析式和定义域是()
A.y=20-2x(x≤10)B.y=20-2x(x10)
C.y=20-2x(4≤x10)D.y=20-2x(5x10)
4、二次函数y=x2-4x+4的定义域为〔a,b〕(ab),值域也是〔a,b〕,则区间〔a,b〕是()
A.〔0,4〕B.〔1,4〕C.〔1,3〕D.〔3,4〕
5、函数y=f(x+2)的定义域是〔3,4〕,则函数y=f(x+5)的定义域是()
A.〔0,1〕B.〔3,4〕C.〔5,6〕D.〔6,7〕
6、函数的值域是()
7、(2007安徽)图中的图像所表示的函数的解析式是()二.填空题
8、若f(x)=(x+a)3对任意x∈R都有f(1+x)=-f(1-x),则f(2)+f(-2)=;
9、若函数的值域为,则其定义域为;三.解答题
10、求函数的定义域。
11、已知,若f(a)=3,求a的值。
12、已知函数f(x)满足2f(x)-f(-x)=-x2+4x,试求f(x)的表达式。
13、某人买来120m竹篱笆,想靠墙围成一个矩形养鸡场,一边靠墙,三边用竹篱笆。设鸡场的面积为y,与墙连接一边的长为x。
(1)将y表示成x的函数;
(2)与墙连接的一边多长时,鸡场的面积最大?
高1函数解题方法的名称+例题
已知函数f(x)=ln[e^x+a](a为常数)是实数集R上的奇函数,
函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数。
(1)求a的值。
(2)若g(x)≤t?+λt+1在x∈[-1,1]上恒成立,求t的取值范围。
(3)讨论关于x的方程(lnx)/f(x)=x?-2ex+m的根的个数。
(1)f(x)是奇函数--->f(0)=0,即ln(1+a)=0--->a=0
(2)--->f(x)=x--->g(x)=λx+sinx是区间[-1,1]上的减函数
--->g'(x)=λ+cosx≤0在区间[-1,1]上恒成立--->λ≤-1
--->g(x)=λx+sinx在[-1,1]上的最大值=g(-1)=-(λ+sin1)
g(x)≤t?+λt+1在x∈[-1,1]上恒成立即:g(-1)≤t?+λt+1成立
--->t?+λt+(1+λ+sin1)≥0--->λ(t+1)≥-(t?+1+sin1)
∵λ≤-1,∴(t+1)<0且-(t?+1+sin1)/(t+1)≥-1
--->t?+1+sin1≥t+1--->t?-t+sin1≥0,
Δ<0显然成立
--->t<-1
(3)(lnx)/f(x)=x?-2ex+m
很难很那数学题!?已知定义在R上的奇函数f(x)满足f(x)=-f(x-2)
抽象函数
一般形式为 y=f(x)且无法用数字和字母表示出来的函数,一般出现在题目中,或许有定义域、值域等。
1抽象函数常常与周期函数结合,如:
f(x)=-f(x+2)
f(x)=f(x+4)
2解抽象函数题,通常要用赋值法,而且高考数学中,常常要先求F(0) F(1)
抽象函数的经典题目!!!
我们把没有给出具体解析式的函数称为抽象函数。由于这类问题可以全面考查学生对函数概念和性质的理解,同时抽象函数问题又将函数的定义域,值域,单调性,奇偶性,周期性和图象集于一身,所以在高考中不断出现;如2002年上海高考卷12题,2004年江苏高考卷22题,2004年浙江高考卷12题等。学生在解决这类问题时,往往会感到无从下手,正确率低,本文就这类问题的解法谈一点粗浅的看法。
一.特殊值法:在处理选择题时有意想不到的效果。
例1 定义在R上的函数f(x)满足f (x + y) = f (x) + f ( y )(x,y∈R),当x<0时,, f (x)>0,则函数f (x)在[a,b]上 ( )
A 有最小值f (a) B有最大值f (b) C有最小值f (b) D有最大值f ( )
分析:许多抽象函数是由特殊函数抽象背景而得到的,如正比例函数f (x)= kx(k≠0), , , ,可抽象为f (x + y) = f (x) +f (y),与此类似的还有
特殊函数 抽象函数
f (x)= x f (xy) =f (x) f (y)
f (x)=
f (x+y)= f (x) f (y)
f (x)=
f (xy) = f (x)+f (y)
f (x)= tanx f(x+y)=
此题作为选择题可采用特殊值函数f (x)= kx(k≠0)
∵当x <0时f (x) > 0即kx > 0。.∴k < 0,可得f (x)在[a,b]上单调递减,从而在[a,b]上有最小值f(b)。
二.赋值法.根据所要证明的或求解的问题使自变量取某些特殊值,从而来解决问题。
例2 除了用刚才的方法外,也可采用赋值法
解:令y = -x,则由f (x + y) = f (x) + f (y) (x,y∈R)得f (0) = f (x) +f (-x)…..①,
再令x = y = 0得f(0)= f(0)+ f(0)得f (0)=0,代入①式得f (-x)= -f(x)。
得 f (x)是一个奇函数,再令 ,且 。
∵x <0,f (x) >0,而 ∴ ,则得 ,
即f (x)在R上是一个减函数,可得f (x)在[a,b]上有最小值f(b)。
例3 已知函数y = f (x)(x∈R,x≠0)对任意的非零实数 , ,恒有f( )=f( )+f( ),
试判断f(x)的奇偶性。
解:令 = -1, =x,得f (-x)= f (-1)+ f (x) ……①为了求f (-1)的值,令 =1, =-1,则f(-1)=f(1)+f(-1),即f(1)=0,再令 = =-1得f(1)=f(-1)+f(-1)=2f(-1) ∴f(-1)=0代入①式得
f(-x)=f(x),可得f(x)是一个偶函数。
三.利用函数的图象性质来解题:
抽象函数虽然没有给出具体的解析式,但可利用它的性质图象直接来解题。
抽象函数解题时常要用到以下结论:
定理1:如果函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图象关于x= 对称。
定理2:如果函数y=f(x)满足f(a+x)=f(b+x),则函数y=f(x)是一个周期函数,周期为a-b。
例4 f(x)是定义在R上的偶函数,且f(x)=f(2-x),证明f(x)是周期函数。
分析:由 f(x)=f(2-x),得 f(x)的图象关于x=1对称,又f(x)是定义在R上的偶函数,图象关于y轴对称,根据上述条件,可先画出符合条件的一个图,那么就可以化无形为有形,化抽象为具体。从图上直观地判断,然后再作证明。
由图可直观得T=2,要证其为周期函数,只需证f (x) = f (2 + x)。
证明:f (x) = f (-x) = f [2-(-x)] = f (2 + x),∴ T=2。
∴f (x)是一个周期函数。
例5 已知定义在[-2,2]上的偶函数,f (x)在区间[0,2]上单调递减,若f (1-m)<f (m),求实数m的取值范围
分析:根据函数的定义域,-m,m∈[-2,2],但是1- m和m分别在[-2,0]和[0,2]的哪个区间内呢?如果就此讨论,将十分复杂,如果注意到偶函数,则f (x)有性质f(-x)= f (x)=f ( |x| ),就可避免一场大规模讨论。
解:∵f (x)是偶函数, f (1-m)<f(m) 可得 ,∴f(x)在[0,2]上是单调递减的,于是 ,即 化简得-1≤m< 。
采纳我的吧
高考数学问题:设f(x)是定义在R上的一个减函数
此题是2009年山东高考试题(理科)第16题,原题是这样子:
已知定义在R上的奇函数f(x)满足f(x)=-f(x-4),且在区间0,2上为增函数,若方程f(x)=m(m>0)在区间-8,8上有四个不同的根X1
X2
X3
X4,则X1+X2+X3+X4
=?
解定义在R上的奇函数f(x)满足f(x)=-f(x-4),
所以f(x)=
f(4-x),函数图像关于直线x=2对称且f(0)=0.
由f(x-4)
=-
f(x)可知:f(x-8)
=f(x),函数周期为8.
又因函数在区间0,4上为增函数,所以函数在-4,0上也是增函数。
根据以上分析可以画出函数图像的简图。
方程f(x)=m(m>0)在区间-8,8上有四个不同的根X1,X2,X3,X4,
不妨设X1<X2<X3<X4,由对称性可知:X1+X2=-12,X3+X4=4,所以X1+X2+X3+X4=-8.
1.F(-x)=f(-x)-f(-(-x))=f(-x)-f(x)=-[f(x)-f(-x)]=-F(x),
所以F(x)是奇函数
任给x1,x2∈R,x1<x2,则-x1,-x2∈R,-x2<-x1,
因为f(x)是定义在R上的一个减函数,
所以f(x2)-f(x1)<0,f(-x1)-f(-x2)<0,
于是F(x2)-F(x1)=[f(x2)-f(-x2)]-[f(x1)-f(-x1)]
即F(x2)-F(x1)=[f(x2)-f(x1)]+[f(-x1)-f(-x2)]<0,
所以F(x)是减函数
答案:C
第二题……,f(1+x)f(1-x),……什么意思?