您现在的位置是: 首页 > 教育资讯 教育资讯

高考数学试题二卷,高考二卷数学填空题第三题

tamoadmin 2024-07-12 人已围观

简介1.谁有09年福建省理科高考数学卷的选择题及答案。2.高考数学试卷2022(对口高考数学试卷2022)3.重庆2023高考数学考什么卷啊4.重庆08年高考数学题5.2021年高考数学甲卷选择题第三题为什么选b?6.(1/2)求高手帮忙查一下每年的高考全国卷数学有没有固定的题型,,往年高考的解答题有没有固定的题型,...不一定,但解三角形的确是重点。网上有很多相关练习历届高考中的“解三角形”试题精选

1.谁有09年福建省理科高考数学卷的选择题及答案。

2.高考数学试卷2022(对口高考数学试卷2022)

3.重庆2023高考数学考什么卷啊

4.重庆08年高考数学题

5.2021年高考数学甲卷选择题第三题为什么选b?

6.(1/2)求高手帮忙查一下每年的高考全国卷数学有没有固定的题型,,往年高考的解答题有没有固定的题型,...

高考数学试题二卷,高考二卷数学填空题第三题

不一定,但解三角形的确是重点。网上有很多相关练习

历届高考中的“解三角形”试题精选(自我测试)

一、选择题:(每小题5分,计40分)

1.(2008北京文)已知△ABC中,a=,b=,B=60°,那么角A等于( )

(A)135° (B)90° (C)45° (D)30°

2.(2007重庆理)在中,则BC =( )

A. B. C.2 D.

3.(2006山东文、理)在△ABC中,角A、B、C的对边分别为a、b、c,A=,a=,b=1,则c=( )

(A)1 (B)2 (C)—1 (D)

4.(2008福建文)在中,角A,B,C的对应边分别为a,b,c,若,则角B的值为( )

A. B. C.或 D.或

5.(2005春招上海)在△中,若,则△是( )

(A)直角三角形. (B)等边三角形. (C)钝角三角形. (D)等腰直角三角形.

6.(2006全国Ⅰ卷文、理)的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则( )

A. B. C. D.

7.(2005北京春招文、理)在中,已知,那么一定是( )

A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形

8.(2004全国Ⅳ卷文、理)△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c

成等差数列,∠B=30°,△ABC的面积为,那么b=( )

A. B. C. D.

二.填空题:(每小题5分,计30分)

9.(2007重庆文)在△ABC中,AB=1, BC=2, B=60°,则AC= 。

10. (2008湖北文)在△ABC中,a,b,c分别是角A,B,C所对的边,已知

则A= .

11.(2006北京理)在中,若,则的大小是_____.

12.(2007北京文、理)在中,若,,,则________.

13.(2008湖北理)在△ABC中,三个角A,B,C的对边边长分别为a=3,b=4,c=6,则bc cosA+ca cosB+ab cosC的值为 .

14.(2005上海理)在中,若,,,则的面积S=_______

三.解答题:(15、16小题每题12分,其余各题每题14分,计80分)

15.(2008全国Ⅱ卷文) 在中,,.

(Ⅰ)求的值; (Ⅱ)设,求的面积.

16.(2007山东文)在中,角的对边分别为.

(1)求;(2)若,且,求.

17、(2008海南、宁夏文)如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2。(1)求cos∠CBE的值;(2)求AE。

18.(2006全国Ⅱ卷文)在,求

(1) (2)若点

19.(2007全国Ⅰ理)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c, a=2bsinA

(Ⅰ)求B的大小; (Ⅱ)求的取值范围.

O

20.(2003全国文、理,广东)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向300km的海面P处,并以20km/h的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?

历届高考中的“解三角形”试题精选(自我测试)

参考答案

一、选择题:(每小题5分,计40分)

二.填空题:(每小题5分,计30分)

9.; 10. 30° ; .11. __ 60O _. 12. ; 13. ; 14.

三.解答题:(15、16小题每题12分,其余各题每题14分,计80分)

15.解:(Ⅰ)由,得,由,得.

所以.

(Ⅱ)由正弦定理得.

所以的面积.

16.解:(1)

又 解得.

,是锐角. .

(2)∵,即abcosC= ,又cosC= .

又 . .

. .

17.解:(Ⅰ)因为,,所以.

所以.

(Ⅱ)在中,,

由正弦定理.

18.解:(1)由

由正弦定理知

(2),

由余弦定理知

19.解:(Ⅰ)由,根据正弦定理得,所以,

由为锐角三角形得.

(Ⅱ)

由为锐角三角形知,,.

解得 所以,

所以.由此有,

所以,的取值范围为.

20.解:设在t时刻台风中心位于点Q,此时|OP|=300,|PQ|=20t,

台风侵袭范围的圆形区域半径为r(t)=10t+60,

O

由,可知,

cos∠OPQ=cos(θ-45o)= cosθcos45o+ sinθsin45o

=

在 △OPQ中,由余弦定理,得

=

=

若城市O受到台风的侵袭,则有|OQ|≤r(t),即

整理,得,解得12≤t≤24,

答:12小时后该城市开始受到台风的侵袭.

2010届高考数学目标训练(1)(文科版)

时量:60分钟 满分:80分 班级: 姓名: 计分:

个人目标:□优秀(70’~80’) □良好(60’~69’) □合格(50’~59’)

一、选择题:本大题共5小题,每小题5分,满分25分.

1、若复数是纯虚数,则实数a的值为

A.1 B.2 C.1或2 D.-1

2、设等比数列的公比q=2,前n项和为Sn,则=( )

A. B. C. D.

3、设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为

,则点P横坐标的取值范围为

(A) (B)[-1,0] (C)[0,1] (D)

4、在△ABC中,角ABC的对边分别为a、b、c,若,则角B的值为

A. B. C.或 D. 或

5、用与球心距离为的平面去截球,所得的截面面积为,则球的体积为

A. B. C. D.

二、填空题:本大题共3小题,每小题5分,满分15分.

6、的夹角为,,则

7、若满足约束条件则的最大值为 .

8、若直线与圆 (为参数)没有公共点,

则实数m的取值范围是

三、解答题:本大题共3小题,满分40分,第9小题12分,第10、11小题各14分. 解答须写出文字说明、证明过程或演算步骤.

9、因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4.

(1)求两年后柑桔产量恰好达到灾前产量的概率;

(2)求两年后柑桔产量超过灾前产量的概率.

10、设平面直角坐标系xoy中,设二次函数的图像与两坐标轴有三个交点,经过这三个交点的圆记为C。求:

(1)求实数b的取值范围

(2)求圆C的方程

(3)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论。

11、在数列中,,.

(Ⅰ)设.证明:数列是等差数列;

(Ⅱ)求数列的前项和.

答案详解

一、选择题:本大题共5小题,每小题5分,满分25分.

1、若复数是纯虚数,则实数a的值为

A.1 B.2 C.1或2 D.-1

解:由得,且(纯虚数一定要使虚部不为0)

2、设等比数列的公比q=2,前n项和为Sn,则=( )

A. B. C. D.

解:

3、设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为

,则点P横坐标的取值范围为

(A) (B)[-1,0] (C)[0,1] (D)

解析:本小题主要考查利用导数的几何意义求切线斜率问题。依题设切点的横坐标

为, 且(为点P处切线的倾斜角),又∵,

∴,∴

4、在△ABC中,角ABC的对边分别为a、b、c,若,则角B的值为

A. B. C.或 D. 或

解: 由得即

,又在△中所以B为或

5、 用与球心距离为的平面去截球,所得的截面面积为,则球的体积为

A. B. C. D.

解:截面面积为截面圆半径为1,又与球心距离为球的半径是,

所以根据球的体积公式知,故B为正确答案.

二、填空题:本大题共3小题,每小题5分,满分15分.

6、的夹角为,,则 7

7、若满足约束条件则的最大值为 9 .

8、若直线与圆 (为参数)没有公共点,

则实数m的取值范围是

解:圆心为,要没有公共点,根据圆心到直线的距离大于半径可得

,即,

三、解答题:本大题共3小题,满分40分,第9小题12分,第10、11小题各14分. 解答须写出文字说明、证明过程或演算步骤.

9、因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立.该方案预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑桔产量为第一年产量的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4.

(1)求两年后柑桔产量恰好达到灾前产量的概率;

(2)求两年后柑桔产量超过灾前产量的概率.

解:(1)令A表示两年后柑桔产量恰好达到灾前产量这一事件

(2)令B表示两年后柑桔产量超过灾前产量这一事件

10、设平面直角坐标系xoy中,设二次函数的图像与两坐标轴有三个交点,经过这三个交点的圆记为C。求:

(1)求实数b的取值范围

(2)求圆C的方程

(3)问圆C是否经过某定点(其坐标与b无关)?请证明你的结论。

解析:本小题考查二次函数图像于性质、圆的方程的求法。

(1)令x=0,得抛物线于y轴的交点是(0,b)

令f(x)=0,得x2+2x+b=0,由题意b≠0且△>0,解得b<1且b≠0

(2)设所求圆的一般方程为x2+ y2+Dx+Ey+F=0

令y=0,得x2+Dx+F=0,这与x2+2x+b=0是同一个方程,故D=2,F=b

令x=0,得y2+ Ey+b=0,此方程有一个根为b,代入得E=-b-1

所以圆C的方程为x2+ y2+2x -(b+1)y+b=0

(3)圆C必过定点(0,1),(-2,1)

证明如下:将(0,1)代入圆C的方程,得左边= 02+ 12+2×0-(b+1)×1+b=0,右边=0

所以圆C必过定点(0,1);同理可证圆C必过定点(-2,1)。

11、在数列中,,.

(Ⅰ)设.证明:数列是等差数列;

(Ⅱ)求数列的前项和.

解:(1),

则为等差数列,,

,.

(2)

两式相减,得

谁有09年福建省理科高考数学卷的选择题及答案。

2022年新高考二卷数学难。

数学高考全国二卷考的题创新性相对较高,试卷整体难度偏大。与去年相比,这次高考数学试题难度有非常明显的提升。整体考察重基础,但创新较多。对学生的计算能力要求较高。虽然考察内容注重基础,但也很注重学生能力的培养,注重数学的实际应用。

新高考二卷数学的考查:

1、试卷在题型的考查

试卷在选择题、填空题、解答题三种题型都加强了对主干知识的考查。如全国甲卷理科第19题,以学校体育比赛为情境,考查概率的基础知识和求离散型随机变量的分布列与期望的方法,实现了对主干知识的深入考查。

2、试卷突出对学科的考查

试卷突出对学科基本概念、基本原理的考查,强调知识之间的内在联系,引导学生形成学科知识系统;注重本原性方法,淡化特殊技巧,强调通性通法的深入理解和综合运用,促进学生将知识和方法内化为自身的知识结构。

高考二卷数学答题技巧:

1、养成良好的考试习惯

拿到试卷,首先填写好姓名和考号,快速浏览试卷,把握全卷的难易,高中英语,把容易的题的题号写在草稿纸的最顶端,再做题,遇到卡壳,马上跳过去做容易的题。这样保证最大限度发挥实力,也解决了由于过度紧张导致的暂时遗忘影响考试发挥的问题。

2、把握好审题关

很多学生练习了很多题,题与题之间有些相似,但又有区别,做题一不小心就会习惯性主观附加已知条件,导致最终出错。要求“字字看清,句句读懂,理解题意”,审两遍题,明确已知条件和隐含的已知条件。

3、深刻理解“长题不难,难题不后”

一般高考试卷中总会出现题干很长,语句环绕的试题。乍一看很难理解,摸不清意图。但往往多读几遍,把其中关系弄清,做起来就比较简单。做长题的关键是审题。“难题不后”,主要是说最后一题一般不是最难的,所以要学会总体把握全卷,先做简单的后做难的。

高考数学试卷2022(对口高考数学试卷2022)

2009年普通高等学校招生全国统一考试(福建卷)

数学(理工农医类)

一. 选择题:本小题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 函数 最小值是

A.-1 B. C. D.1

1.答案:B

[解析]∵ ∴ .故选B

2.已知全集U=R,集合 ,则 等于

A. { x ∣0 x 2} B { x ∣0<x<2}

C. { x ∣x<0或x>2} D { x ∣x 0或x 2}

2.答案:A

[解析]∵计算可得 或 ∴ .故选A

3.等差数列 的前n项和为 ,且 =6, =4, 则公差d等于

A.1 B C.- 2 D 3

3.答案:C

[解析]∵ 且 .故选C

4. 等于

A. B. 2 C. -2 D. +2

4.答案:D

[解析]∵ .故选D

5.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 >

的是

A. = B. = C . = D

5.答案:A

[解析]依题意可得函数应在 上单调递减,故由选项可得A正确。

6.阅读右图所示的程序框图,运行相应的程序,输出的结果是w.w.w.k.s.5.u.c.o.m

A.2 B .4 C. 8 D .16

6.答案:C

[解析]由算法程序图可知,在n =4前均执行”否”命令,故n=2×4=8. 故选C

7.设m,n是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 // 的一个充分而不必要条件是w.w.w.k.s.5.u.c.o.m

A.m // 且l // B. m // l 且n // l

C. m // 且n // D. m // 且n // l

7.答案:B

[解析]若 ,则可得 .若 则存在

8.已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动

员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,

指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数:

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

据此估计,该运动员三次投篮恰有两次命中的概率为

A.0.35 B 0.25 C 0.20 D 0.15

8.答案:B

[解析]由随机数可估算出每次投篮命中的概率 则三次投篮命中两次为 0.25故选B

9.设a,b,c为同一平面内具有相同起点的任意三个非零向量,且满足a与b不共线,

a c ∣a∣=∣c∣,则∣b ? c∣的值一定等于w.w.w.k.s.5.u.c.o.m

A. 以a,b为两边的三角形面积 B 以b,c为两边的三角形面积

C.以a,b为邻边的平行四边形的面积 D 以b,c为邻边的平行四边形的面积

9.答案:C

[解析]依题意可得 故选C.

10.函数 的图象关于直线 对称。据此可推测,对任意的非零实数a,b,c,m,n,p,关于x的方程 的解集都不可能是

A. B C D

10. 答案:D

[解析]本题用特例法解决简洁快速,对方程 中 分别赋值求出 代入 求出检验即得.

第二卷 (非选择题共100分)

二、填空题:本大题共5小题,每小题4分,共20分。把答案填在答题卡的相应位置。

11.若 (i为虚数单位, )则 _________ w.w.w.k.s.5.u.c.o.m

11. 答案:2

解析:由 ,所以 故 。

12.某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示。记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x)无法看清。若记分员计算无误,则数字 应该是___________

12. 答案:1

解析:观察茎叶图,

可知有 。

13.过抛物线 的焦点F作倾斜角为 的直线交抛物线于A、B两点,若线段AB的长为8,则 ________________ w.w.w.k.s.5.u.c.o.m

13. 答案:2

解析:由题意可知过焦点的直线方程为 ,联立有 ,又 。

14.若曲线 存在垂直于 轴的切线,则实数 取值范围是_____________.

14. 答案:

解析:由题意可知 ,又因为存在垂直于 轴的切线,

所以 。

15.五位同学围成一圈依序循环报数,规定:

①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;

②若报出的数为3的倍数,则报该数的同学需拍手一次

已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.

15. 答案:5

解析:由题意可设第 次报数,第 次报数,第 次报数分别为 , , ,所以有 ,又 由此可得在报到第100个数时,甲同学拍手5次。

三解答题w.w.w.k.s.5.u.c.o.m

16.(13分)

从集合 的所有非空子集中,等可能地取出一个。

(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;

(2) 记所取出的非空子集的元素个数为 ,求 的分布列和数学期望E

16、解:(1)记”所取出的非空子集满足性质r”为事件A

基本事件总数n= =31

事件A包含的基本事件是{1,4,5}、{2,3,5}、{1,2,3,4}

事件A包含的基本事件数m=3

所以

(II)依题意, 的所有可能取值为1,2,3,4,5

又 , ,

故 的分布列为:

1 2 3 4 5

P

从而E +2 +3 +4 +5

17(13分)

如图,四边形ABCD是边长为1的正方形, ,

,且MD=NB=1,E为BC的中点

(1) 求异面直线NE与AM所成角的余弦值

(2) 在线段AN上是否存在点S,使得ES 平面AMN?若存在,求线段AS的长;若不存在,请说明理由w.w.w.k.s.5.u.c.o.m

17.解析:(1)在如图,以D为坐标原点,建立空间直角坐标

依题意,得 。

所以异面直线 与 所成角的余弦值为 .A

(2)假设在线段 上存在点 ,使得 平面 .

,

可设

又 .

由 平面 ,得 即

故 ,此时 .

经检验,当 时, 平面 .

故线段 上存在点 ,使得 平面 ,此时 .

18、(本小题满分13分)

如图,某市拟在长为8km的道路OP的一侧修建一条运动

赛道,赛道的前一部分为曲线段OSM,该曲线段为函数

y=Asin x(A>0, >0) x [0,4]的图象,且图象的最高点为

S(3,2 );赛道的后一部分为折线段MNP,为保证参赛

运动员的安全,限定 MNP=120

(I)求A , 的值和M,P两点间的距离;

(II)应如何设计,才能使折线段赛道MNP最长? w.w.w.k.s.5.u.c.o.m

18.本小题主要考查三角函数的图象与性质、解三角形等基础知识,考查运算求解能力以及应用数学知识分析和解决实际问题的能力,考查化归与转化思想、数形结合思想,

解法一

(Ⅰ)依题意,有 , ,又 , 。

当 是,

(Ⅱ)在△MNP中∠MNP=120°,MP=5,

设∠PMN= ,则0°< <60°

由正弦定理得

,

0°< <60°, 当 =30°时,折线段赛道MNP最长

亦即,将∠PMN设计为30°时,折线段道MNP最长

解法二:

(Ⅰ)同解法一

(Ⅱ)在△MNP中,∠MNP=120°,MP=5,

由余弦定理得 ∠MNP=

从而 ,即

当且仅当 时,折线段道MNP最长

注:本题第(Ⅱ)问答案及其呈现方式均不唯一,除了解法一、解法二给出的两种设计方式,还可以设计为:① ;② ;③点N在线段MP的垂直平分线上等

19、(本小题满分13分)

已知A,B 分别为曲线C: + =1(y 0,a>0)与x轴

的左、右两个交点,直线 过点B,且与 轴垂直,S为 上

异于点B的一点,连结AS交曲线C于点T.

(1)若曲线C为半圆,点T为圆弧 的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在 ,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。w.w.w.k.s.5.u.c.o.m

19.解析

解法一:

(Ⅰ)当曲线C为半圆时, 如图,由点T为圆弧 的三等分点得∠BOT=60°或120°.

(1)当∠BOT=60°时, ∠SAE=30°.

又AB=2,故在△SAE中,有

(2)当∠BOT=120°时,同理可求得点S的坐标为 ,综上,

(Ⅱ)假设存在 ,使得O,M,S三点共线.

由于点M在以SB为直线的圆上,故 .

显然,直线AS的斜率k存在且k>0,可设直线AS的方程为 .

设点

故 ,从而 .

亦即

由 得

由 ,可得 即

经检验,当 时,O,M,S三点共线. 故存在 ,使得O,M,S三点共线.

解法二:

(Ⅰ)同解法一.

(Ⅱ)假设存在a,使得O,M,S三点共线.

由于点M在以SO为直径的圆上,故 .

显然,直线AS的斜率k存在且K>0,可设直线AS的方程为

设点 ,则有

由 所直线SM的方程为

O,S,M三点共线当且仅当O在直线SM上,即 .

故存在 ,使得O,M,S三点共线.

20、(本小题满分14分)

已知函数 ,且 w.w.w.k.s.5.u.c.o.m

(1) 试用含 的代数式表示b,并求 的单调区间;

(2)令 ,设函数 在 处取得极值,记点M ( , ),N( , ),P( ), ,请仔细观察曲线 在点P处的切线与线段MP的位置变化趋势,并解释以下问题:

(I)若对任意的m ( , x ),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;

(II)若存在点Q(n ,f(n)), x n< m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程)w.w.w.k.s.5.u.c.o.m

20.解法一:

(Ⅰ)依题意,得

由 .

从而

①当a>1时,

当x变化时, 与 的变化情况如下表:

x

+ - +

单调递增 单调递减 单调递增

由此得,函数 的单调增区间为 和 ,单调减区间为 。

②当 时, 此时有 恒成立,且仅在 处 ,故函数 的单调增区间为R

③当 时, 同理可得,函数 的单调增区间为 和 ,单调减区间为

综上:

当 时,函数 的单调增区间为 和 ,单调减区间为 ;

当 时,函数 的单调增区间为R;

当 时,函数 的单调增区间为 和 ,单调减区间为 .

(Ⅱ)由 得 令 得

由(1)得 增区间为 和 ,单调减区间为 ,所以函数 在处 取得极值,故M( )N( )。

观察 的图象,有如下现象:

①当m从-1(不含-1)变化到3时,线段MP的斜率与曲线 在点P处切线的斜率 之差Kmp- 的值由正连续变为负。

②线段MP与曲线是否有异于H,P的公共点与Kmp- 的m正负有着密切的关联;

③Kmp- =0对应的位置可能是临界点,故推测:满足Kmp- 的m就是所求的t最小值,下面给出证明并确定的t最小值.曲线 在点 处的切线斜率 ;

线段MP的斜率Kmp

当Kmp- =0时,解得

直线MP的方程为

当 时, 在 上只有一个零点 ,可判断 函数在 上单调递增,在 上单调递减,又 ,所以 在 上没有零点,即线段MP与曲线 没有异于M,P的公共点。

当 时, .

所以存在 使得

即当 MP与曲线 有异于M,P的公共点

综上,t的最小值为2.

(2)类似(1)于中的观察,可得m的取值范围为

解法二:

(1)同解法一.

(2)由 得 ,令 ,得

由(1)得的 单调增区间为 和 ,单调减区间为 ,所以函数在处取得极值。故M( ).N( )

(Ⅰ) 直线MP的方程为

线段MP与曲线 有异于M,P的公共点等价于上述方程在(-1,m)上有根,即函数

上有零点.

因为函数 为三次函数,所以 至多有三个零点,两个极值点.

又 .因此, 在 上有零点等价于 在 内恰有一个极大值点和一个极小值点,即 内有两不相等的实数根.

等价于 即

又因为 ,所以m 的取值范围为(2,3)

从而满足题设条件的r的最小值为2.

21、本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中,

(1)(本小题满分7分)选修4-4:矩阵与变换w.w.w.k.s.5.u.c.o.m

已知矩阵M 所对应的线性变换把点A(x,y)变成点A ‘(13,5),试求M的逆矩阵及点A的坐标

(2)(本小题满分7分)选修4-4:坐标系与参数方程

已知直线l:3x+4y-12=0与圆C: ( 为参数 )试判断他们的公共点个数

(3)(本小题满分7分)选修4-5:不等式选讲

解不等式∣2x-1∣<∣x∣+1

21.

(1)解:依题意得

由 得 ,故

从而由 得

故 为所求.

(2)解:圆的方程可化为 .

其圆心为 ,半径为2.

(3)解:当x<0时,原不等式可化为

又 不存在;

当 时,原不等式可化为

综上,原不等式的解集为

重庆2023高考数学考什么卷啊

今天小编辑给各位分享高考数学试卷2022的知识,其中也会对对口高考数学试卷2022分析解答,如果能解决你想了解的问题,关注本站哦。

2022年全国乙卷高考数学试题答案

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。

2022年全国乙卷高考数学试题答案

全面认识你自己

认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。

首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。

其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。

最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。

高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。

与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。

此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。

在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。

考生个人特征情况

考生个人特征如兴趣、特长、志向、能力、职业价值观等。

兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。

特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。

志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。

能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。

职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。

2022年全国乙卷高考数学试题答案相关文章:

★2022高考全国乙卷试题及答案

★2022高考理科数学乙卷试题解析

★2022年全国乙卷高考理科数学

★2022年全国乙卷文科数学卷真题公布

★2022年高考数学试题及答案

★2022年全国乙卷高考数学真题及答案

★2022年全国理科数学卷试题答案及解析

★2022全国Ⅰ卷高考数学试题及参考答案一览

★2022年英语全国乙卷试题及答案

★2022年高考乙卷数学真题试卷

2022新高考全国卷的数学题是什么难度?有多少基础分?

随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。

一、2022年新高考全国卷的数学题处于中上等难度

根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分

一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结

总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。

2022年高考数学试题有哪些新变化?

2022年高考数学落实立德树人根本任务,促进学生德智体美劳全面发展,体现高考改革的要求。试卷突出数学学科特点,强化基础考查,突出关键能力,加强教考衔接,服务“双减”政策实施,助力基础教育提质增效。

变化一、设置现实情境,发挥育人作用

高考数学命题坚持思想性与科学性的统一,发挥数学应用广泛、联系实际的学科特点,设置真实情境,命制具有教育意义的试题,发挥数学考试的教育功能和引导作用。

变化二、设置优秀传统文化情境

数学试卷以中华优秀传统文化为试题情境材料,让学生领略中华民族的智慧和数学研究成果,进一步树立民族自信心和自豪感,培育爱国主义情感。如新高考Ⅱ卷第3题以中国古代建筑中的举架结构为背景,考查学生综合应用等差数列、解析几何、三角函数等基础知识解决实际问题的能力。全国甲卷理科第8题取材于我国古代科学家沈括的杰作《梦溪笔谈》,以沈括研究的圆弧长计算方法“会圆术”为背景,让学生直观感受我国古代科学家探究问题和解决问题的过程,引发学生的学习兴趣。

变化三、设置社会经济发展情境

数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。如新高考Ⅰ卷第4题以我国的重大建设成就“南水北调”工程为背景,考查学生的空间想象、运算求解能力,试题引导学生关注社会主义建设的成果,增强社会责任感。全国甲卷文、理科第2题以社区环境建设中的“垃圾分类”为背景考查学生的数据分析能力。全国乙卷文、理科第19题以生态环境建设为背景材料,考查学生应用统计的基本知识和基础方法解决实际问题的能力,对数据处理与数学运算素养也作了相应的考查。

高考数学试卷2022难吗

难。

全国卷,和新高考卷的高考学子,都觉得2022年高考数学试卷还是挺难的。不过难的话,其他人也不会太容易,换个心态,大家都很难,心理就会平衡一些了。

全国卷和新高考卷的高考学子们,考过了就把心态调整好,积极的面对接下来的考试,才是最正确的做法。心态好,可能运气就会好,接下来的考试就可能会发挥的更好。

考生四:王少波,重庆考生

咳,难啊,一点都不简单。我还听被人数,新高考卷的数学题目简单一些,这真是在胡扯八道。这张试卷,从选择题道填空题,再到大题,都比平时的难很多。考完数学之后,我们班好多考生都觉得难,包括我们的数学老师,都说这试卷,出的有点难为人了。今年新高考卷的考生,也太难了,我都听说全国卷的简单一些。

你如何评价2022新高考数学试卷,今年题目难度如何,有哪些变化?

今年的高考数学居然可以说是地狱级别的难度,而且这次的试卷让很多人都非常的崩溃,也让很多人觉得这种题目根本就让人看不下去,让人非常的愤怒。题型发生了变化,出题的模式也发生了变化,对于一些题目的题型发生了改变,而且还引用了一些实时的新闻,能够通过一些新闻来增加答题的具体性,也能够吸引人们的关注。

2022新高考全国一卷数学试卷及答案解析

为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!

2022新高考全国一卷数学试卷

2022新高考全国一卷数学试卷答案解析参考

高考怎样填志愿

1、选择哪个学校

填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。

2、选择什么专业

选择专业最主要的是结合自己的兴趣和基础,或者毕业后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。

3、提前了解各个学校的情况

在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。

服从调剂意味着什么

1、增加了一次录取机会

在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。

如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。

2、服从调剂,不一定会被调剂到其他专业

从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。

如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。

3、专业调剂会调到哪里去?

专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。

高考之后可以去哪玩

1、云南

云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验传说中的女儿国,一个四季如春的地方很适合放松心情。

云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。

2、杭州

“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼

3、重庆

说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。

4、厦门

厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜

5、西藏

西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。

6、九寨沟

九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。

7、桂林

“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游热点。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种文化的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。

2022新高考全国一卷数学试卷及答案解析相关文章:

★2022高考北京卷数学真题及答案解析

★2022高考全国乙卷试题及答案

★2022全国甲卷高考数学文科试卷及答案解析

★2022高考甲卷数学真题试卷及答案

★2022年北京高考数学试卷

★2022高考全国甲卷数学试题及答案

★2022全国新高考I卷语文试题及答案

★2022全国新高考Ⅰ卷英语试题及答案解析

★2022年全国新高考II卷数学真题及答案

★2022北京卷高考文科数学试题及答案解析

重庆08年高考数学题

2023重庆高考是新高考全国二卷。

重庆统考考试科目及分值为:

语文满分150分,数学(分文、理)满分150分、外语满分150分(含听力30分,笔试120分)、综合(分文、理)满分300分,合计总分满分为750分。

2023年具体科目考试时间安排为:

语文(7月7日9:00至11:30)、数学(7月7日15:00至17:00)、综合(7月8日9:00至11:30)、外语(7月8日15:00至17:00)(外语听力测试在笔试开始前进行)。

重庆高考其他注意事项:

1、考试前要准备考试材料,尤其是考生身份证、准考证等,在考试时务必携带,以免影响正常考试。

2、根据考试大纲要求,考生在考试中不得使用抄袭、翻译、记笔记等禁止活动。

3、考试中不允许交头接耳、抄袭等,一经发现,将取消考试资格。

新课标卷简介及使用情况:

1、新课标卷简介

从2013年开始,新课标全国卷分为Ⅰ卷、Ⅱ卷。从2016年开始,新课标全国卷分为Ⅰ卷、Ⅱ卷、Ⅲ卷。

并且从2016年开始,全国Ⅰ、Ⅱ、Ⅲ卷分别改称为全国乙、甲、丙卷。小语种(日语/俄语/法语/德语/西班牙语)高考统一使用全国卷,各省均无自主命题权,且不分甲、乙、丙卷。

2020年开始,因部分原课标全国卷地区高考改革,新推出新高考全国卷Ⅰ、Ⅱ卷。

2、新课标卷使用情况:

全国甲卷(新课标Ⅱ卷)2021年起使用省区:陕西、甘肃、宁夏、青海、新疆、黑龙江、吉林、内蒙古。

全国乙卷(新课标Ⅰ卷)2021年起使用省区:山西、河南、安徽、江西、浙江(英语听力部分)。

全国丙卷(新课标Ⅲ卷)2021年起使用省区:云南、贵州、四川、西藏、广西。

2021年高考数学甲卷选择题第三题为什么选b?

2008年高考(重庆卷)数学(理科)解析

满分150分。考试时间120分钟。

注意事项:

1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

参考公式:

如果事件A、B互斥,那么   P(A+B)=P(A)+P(B)

如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)

如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率  

Pn(K)=kmPk(1-P)n-k

以R为半径的球的体积V= πR3.

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的.

(1)复数1+ =

(A)1+2i (B)1-2i (C)-1 (D)3

标准答案A

试题解析1+ =1+

高考考点复数的概念与运算。

易错提醒计算失误。

学科网备考提示复数的概念与计算属于简单题,只要考生细心一般不会算错。

(2) 设 是整数,则“ 均为偶数” 是“ 是偶数”的

(A)充分而不必要条件 (B)必要而不充分条件

(C)充要条件 (D)既不充分也不必要条件

标准答案A

试题解析 均为偶数 是偶数 则充分; 是偶数则 均为偶数或者 均为奇数即 是偶数 均为偶数 则不必要,故选A

高考考点利用数论知识然后根据充要条件的概念逐一判定

易错提醒 是偶数则 均为偶数或者 均为奇数

学科网备考提示 均为偶数 是偶数,易得;否定充要时只要举例: ,即可。

(3)圆O1: 和圆O2: 的位置关系是

(A)相离 (B)相交 (C)外切 (D)内切

标准答案B

试题解析 , , 则

高考考点圆的一般方程与标准方程以及两圆位置关系

易错提醒 相交

学科网备考提示圆的一般方程与标准方程互化,此题告诉我们必须全面掌握每一个知识点。

(4)已知函数y= 的最大值为M,最小值为m,则 的值为

(A) (B) (C) (D)

标准答案C

试题解析定义域 ,当且仅当 即 上式取等号,故最大值为 最小值为

高考考点均值定理

易错提醒正确选用

学科网备考提示教学中均值定理变形应高度重视和加强训练

(5)已知随机变量 服从正态分布N(3,a2),则 =

(A) (B) (C) (D)

标准答案D

试题解析 服从正态分布N(3,a2) 则曲线关于 对称,

高考考点正态分布的意义和主要性质。

易错提醒正态分布 性质:曲线关于 对称

学科网备考提示根据正态分布 性质是个较少考查的知识点,尽管此题只考查概念,但是由于考生不注意全面掌握每一个知识点,因而错误率相当高。此题告诉我们必须全面掌握每一个知识点。

(6) 若定义在 上的函数 满足:对任意 有 则下列说法一定正确的是

(A) 为奇函数 (B) 为偶函数(C) 为奇函数(D) 为偶函数

(8)已知双曲线 (a>0,b>0)的一条渐近线为 ,离心率 ,则双曲线方程为

(A) - =1 (B)

(C) (D)

标准答案C

试题解析 , , 所以

高考考点双曲线的几何性质

易错提醒消去参数

学科网备考提示圆锥曲线的几何性质是高考必考内容

(9)如解(9)图,体积为V的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V1为小球相交部分(图中阴影部分)的体积,V2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是

(A)V1= (B) V2=

(C)V1> V2 (D)V1< V2

标准答案D

试题解析 设大球半径为 ,小球半径为 根据题意 所以 于是 即 所以

高考考点球的体积公式及整体思想

易错提醒 及不等式的性质

学科网备考提示数形结合方法是高考解题的锐利武器,应当很好掌物。

(10)函数f(x)= ( ) 的值域是

(A) (B) (C) (D)

标准答案B

试题解析特殊值法, 则f(x)= 淘汰A,

令 得 当时 时 所以矛盾 淘汰C, D

高考考点三角函数与函数值域

易错提醒不易利用函数值为 进行解题

学科网备考提示加强特殊法---淘汰法解选择题的训练,节省宝贵的时间,提高准确率

二、填空题:本大题共6小题,每小题4分,共24分,把答案填写在答题卡相应位置上

(11)设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},

标准答案{2,5}

试题解析 ,

高考考点集合运算

易错提醒补集的概念

学科网备考提示应当把集合表示出来,一般就不会算错。

(12)已知函数f(x)= (当x 0时) ,点在x=0处连续,则 .

标准答案

试题解析 又 点在x=0处连续,

所以 即 故

高考考点连续的概念与极限的运算

易错提醒

学科网备考提示函数连续解题较少考查的知识点,尽管此题只考查概念,但是由于考生不注意全面掌握每一个知识点,因而错误率相当高。此题告诉我们必须全面掌握每一个知识点。

(13)已知 (a>0) ,则 .

标准答案3

试题解析

高考考点指数与对数的运算

易错提醒

学科网备考提示加强计算能力的训练,训练准确性和速度

(14)设 是等差数列{ }的前n项和, , ,则 .

标准答案-72

试题解析 ,

高考考点等差数列求和公式以及等差数列的性质的应用。

易错提醒等差数列的性质

学科网备考提示此题不难,但是应当注意不要因为计算失误而丢分

(15)直线 与圆 相交于两点A,B,弦AB的中点为(0,1),则直线 的方程为 。

标准答案

试题解析设圆心 ,直线 的斜率为 , 弦AB的中点为 , 的斜率为 , 则 ,所以 由点斜式得

高考考点直线与圆的位置关系

易错提醒

学科网备考提示重视圆的几何性质

(16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).

标准答案216

试题解析 则底面共 , ,

,由分类计数原理得上底面共 ,由分步类计数原理得共有

高考考点排列与组合的概念,并能用它解决一些实际问题。

易错提醒掌握排列组合的一些基本方法,做题时从特殊情况分析,可以避免错误。

学科网备考提示排列组合的基本解题方法

三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤.

(17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)

设 的内角A,B,C的对边分别为a,b,c,且A= ,c=3b.求:

(Ⅰ) 的值;(Ⅱ)cotB+cot C的值.

标准答案 解:(Ⅰ)由余弦定理得

= 故

(Ⅱ)解法一: = =

 由正弦定理和(Ⅰ)的结论得

解法二:由余弦定理及(Ⅰ)的结论有

  =

 同理可得

从而

高考考点本小题主要考查余弦定理、三角函数的基本公式、三角恒等变换等基本知识,以及推理和运算能力。 三角函数的化简通常用到降幂、切化弦、和角差角公式的逆运算。

易错提醒正余切转化为正余

学科网备考提示三角函数在高考题中属于容易题,是我们拿分的基础。。

(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)

甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为 ,且各局胜负相互独立.求:(Ⅰ) 打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数 的分别列与期望E .

标准答案 解:令 分别表示甲、乙、丙在第k局中获胜.

(Ⅰ)由独立事件同时发生与互斥事件至少有一个发生的概率公式知,打满3局比赛还未停止的概率为

(Ⅱ) 的所有可能值为2,3,4,5,6,且

故有分布列

2

3

4

5

6

P

 

从而 (局).

高考考点本题主要考查独立事件同时发生、互斥事件、分布列、数学期望的概念和计算,考查分析问题及解决实际问题的能力。

易错提醒连胜两局或打满6局时停止

学科网备考提示重视概率应用题,近几年的试题必有概率应用题。

(19)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)

如题(19)图,在 中,B= ,AC= ,D、E两点分别在AB、AC上.使

,DE=3.现将 沿DE折成直二角角,求:

(Ⅰ)异面直线AD与BC的距离;

(Ⅱ)二面角A-EC-B的大小(用反三角函数表示).

标准答案 解法一:

(Ⅰ)在答(19)图1中,因 ,故BE∥BC.又因B=90°,从而AD⊥DE.

在第(19)图2中,因A-DE-B是直二面角,AD⊥DE,故AD⊥底面DBCE,从

而AD⊥DB.而DB⊥BC,故DB为异面直线AD与BC的公垂线.

下求DB之长.在答(19)图1中,由 ,得

又已知DE=3,从而

y、z轴的正方向建立空间直角坐标系,则D(0,0,0),A(0,0,4), ,E(0,3,0). 过D作DF⊥CE,交CE的延长线

于F,连接AF.

设 从而

,有 ①

又由 ②

联立①、②,解得

因为 ,故 ,又因 ,所以 为所求的二面角A-EC-B的平面角.因 有 所以

因此所求二面角A-EC-B的大小为

高考考点本题主要考查直线、直线与平面、平面与平面的位置关系、异面直线间的距离等知识,考查空间想象能力和思维能力,利用综合法或向量法解决立体几何问题的能力。

易错提醒

学科网备考提示立体几何中的平行、垂直、二面角是考试的重点。

(20)(本小题满分13分.(Ⅰ)小问5分.(Ⅱ)小问8分.)

设函

(Ⅰ)用 分别表示 和 ;

(Ⅱ)当bc取得最小值时,求函数g(x)= 的单调区间。

标准答案解:(Ⅰ)因为

又因为曲线 通过点(0, ),故

又曲线 在 处的切线垂直于 轴,故 即 ,因此

(Ⅱ)由(Ⅰ)得

故当 时, 取得最小值- .此时有

从而

所以 令 ,解得

由此可见,函数 的单调递减区间为(-∞,-2)和(2,+∞);单调递增区间为(-2,2).

高考考点本题主要考查导数的概念和计算、利用导数研究函数的单调性、利用单调性求最值以及不等式的性质。

易错提醒不能求 的最小值

学科网备考提示应用导数研究函数的性质,自2003年新教材使用以来,是常考不衰的考点。

(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)

如题(21)图, 和 的平面上的两点,动点 满足:

(Ⅰ)求点 的轨迹方程:

(Ⅱ)若

由方程组 解得 即P点坐标为

高考考点本题主要考查椭圆的方程及几何性质、 等基础知识、基本方法和分析问题、解决问题的能力。

易错提醒不能将条件 与 联系起来

学科网备考提示重视解析几何条件几何意义教学与训练。

(22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)

 设各项均为正数的数列{an}满足 .

(Ⅰ)若 ,求a3,a4,并猜想a2cos的值(不需证明);

(Ⅱ)记 对n≥2恒成立,求a2的值及数列{bn}的通项公式.

标准答案 解:(Ⅰ)因

由此有 ,故猜想 的通项为

对 求和得 ⑦

由题设知

即不等式22k+1< 对k N*恒成立.但这是不可能的,矛盾.

因此 ,结合③式知, 因此a2=2*2= 将 代入⑦式得 =2- (n N*),

所以 = =22- (n N*)

高考考点本题主要考查等比数列的求和、数学归纳法、不等式的性质,综合运用知识分析问题和解决问题的能力。

易错提醒如何证明,选择方法很重要。本题(Ⅱ)证明要会熟练的使用不等式放宿技巧。

学科网备考提示这种题不仅要求考生有很好的思维、推理能力;而且平时做题要善于总结,对数列与不等式的放宿技巧要非常熟练。

(1/2)求高手帮忙查一下每年的高考全国卷数学有没有固定的题型,,往年高考的解答题有没有固定的题型,...

(1-i)?=1-2i+i?=-2i

-2i*z=3+2i

设z=a+bi

-2i(a+bi)=-2ai-2bi?=-2ai+2b

2b=3,-2a=2

b=3/2,a=-1

选B

不知道你是文科还是理科,文理略有区别,理科考查题型及知识点如下:

一、选择题(12题,每题5分,共60分)

二、填空题(4题,每题5分,共20分)

小题考查知识点比较杂,但根据历年高考,大体考查知识点涵盖(根据题的难度,顺序可能有所调整):

1.考查复数的四则运算,通常为复数的除法;

例: 复数-1+3i/1+i=

A 2+I B 2-I C 1+2i D 1- 2i

2.考查集合运算,即集合的交、并、补等;

例:已知集合A={1.3,根号m},B={1,m} ,A并B=A, 则m=

A 0或根号3 B 0或3 C 1或根号3 D 1或3

还包括圆锥曲线部分1--2道:如求离心率等;

函数部分1--2道:如求函数值域、最值、极值、求某参数取值范围、求函数零点个数、两函数交点个数等;

数列部分1道;

平面向量1道;

三角函数1--2道;

二项式定理1道:通常求二项展开式中每一项的系数;

排列组合1道;

立体几何1--2道。

三、解答题(6道,共70分)大体题型及考查知识点较为固定。

17题:通常考查三角函数或者解三角形;

例:△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A-C)+cosB=1,a=2c,求c。

18题:通常考查立体几何,包括证明异面直线位置关系、证明线面关系、求二面角、求图形中某椎体体积等;

19题:通常考查概率统计和分布列与期望;

例:乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。

(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;

(Ⅱ)X表示开始第4次发球时乙的得分,求X的期望。

20题:通常考查函数部分,包括求函数单调区间、函数极值、参数取值范围等

例:设函数f(x)=ax+cosx,x∈[0,π]。

(Ⅰ)讨论f(x)的单调性;

(Ⅱ)设f(x)≤1+sinx,求a的取值范围。

21题:圆锥曲线部分:第一问通常为求曲线方程或求离心率;第二问为直线与圆锥曲线相交的问题(计算量非常大,建议只列式,放弃计算)

22题:数列部分:包括求通项公式或证明某数列是等差、等比数列、求前n项和、证明某不等式等题型

例:

函数f(x)=x2-2x-3,定义数列{xn}如下:x1=2,xn+1是过两点P(4,5)、Qn(xn,f(xn))的直线PQn与x轴交点的横坐标。

(Ⅰ)证明:2<xnxn+1<3;

(Ⅱ)求数列{xn}的通项公式。

文章标签: # 高考 # 全国 # 数学