您现在的位置是: 首页 > 教育资讯 教育资讯
数学湖南2017高考_2017年湖南高考数学答案
tamoadmin 2024-06-16 人已围观
简介1.湖南高考科目安排2.湖南高考数学知识点总结3.湖南高考2000年以来状元姓名,各出自哪所学校?4.郴州2017高考是不是用湖南卷5.2017年湖南省高考分数线 在2017年的高考中,你想要了解全国各省会有哪些省市用的是全国卷,哪些省市用的是地方卷吗?下面是我网络整理的2017高考使用全国卷和地方卷的省份以供大家学习参考。 更多使用高考使用全国卷相关资讯(点击查看
1.湖南高考科目安排
2.湖南高考数学知识点总结
3.湖南高考2000年以来状元姓名,各出自哪所学校?
4.郴州2017高考是不是用湖南卷
5.2017年湖南省高考分数线
在2017年的高考中,你想要了解全国各省会有哪些省市用的是全国卷,哪些省市用的是地方卷吗?下面是我网络整理的2017高考使用全国卷和地方卷的省份以供大家学习参考。
更多使用高考使用全国卷相关资讯(点击查看) ★2017高考使用全国卷的省份★ ★目前高考自主命题的省份★ ★2017高考改革地区介绍★ 2017高考使用全国卷和地方卷的省份
01、新课标全国Ⅰ卷适用地区:河南、河北、山西、江西(江西为新增省份)
02、新课标全国Ⅱ卷适用地区:青海、西藏、甘肃、贵州、内蒙古、新疆、宁夏、吉林、黑龙江、云南、广西、辽宁(辽宁为新增省份)
03、海南省: 教育 部考试中心命题(政、史、地、理、化、生)+ 新课标全国Ⅱ卷(语、数、英)
04、山东省(山东为新增省份):教育部考试中心命题(语、数、综合)+ 新课标全国Ⅰ卷(英)
2017年高考新增?全国卷?省份为:湖北、湖南、广东、陕西、四川、重庆、福建和安徽。
湖北:语文、数学、外语3个科目将不再自主命题,即所有科目都使用全国卷。
湖南:语文、数学、外语3个科目将不再自主命题,即所有科目都使用全国卷。
广东:英语(精品课)听说部分仍保留现行广东省自主命题方式,笔试部分使用全国卷,听说部分保留现行广东省自主命题方式和分值不变,即笔试占135分,听说考试占15分。其余科目均使用全国卷。
陕西:所有科目都使用全国卷,增加 英语听力 考试,成绩将计入外语科总分之中。
四川:所有科目都使用全国卷,英语恢复听力考试。
重庆:所有科目都使用全国卷,英语听力不再单独考试,不再使用英语PEST-2级听力考试成绩代替普通高考英语听力成绩。
福建:所有科目都使用全国卷,福建省自主命题卷和全国卷有所差异,福建省考生可以阅读这二个版本试卷比较尽快适应高考试卷改版。
安徽:所有科目都使用全国卷。
仍然自主命题的省份:北京、天津、上海、江苏、浙江
2017年高考26个省份使用全国卷之前曾有"25省份高考明年统一试卷"消息,对此,今年3月,教育部新闻发言人续梅曾表示,2017年将增加7个省,包括湖北、广东、陕西、四川、重庆、福建和安徽。
据了解,2014年,使用全国统一命题试卷的省份包括:河南、河北、山西、贵州、甘肃、青海、西藏、黑龙江、吉林、宁夏、内蒙古、新疆、云南、辽宁、广西等15个省(区)。2015年起增加了江西、辽宁和山东3个省份。
2017年高考使用新课标全国卷省份的名单高考试题全国卷全国卷,简称全国卷,是教育部为未能自主命题的省份命题的高考试卷。分为新课标Ⅰ卷和新课标Ⅱ卷。分为新课标一卷和新课标二卷。一卷的难度比二卷大。
教育部部长袁贵仁3月8日下午表示,要减少学生加分项目,地方加分项目取消63%。把自主招生时间调到高考(课程)后。扩大高考统一命题试卷地区范围,目前确定2017年25个省用统一命题的试卷。为帮助广大同学科学备考,特将往年高考采用全国统一命题名单发布给大家参考使用。
2015年前使用省份:河南 河北 山西 陕西(语文及综合)湖北(综合 )江西(综合)湖南(综合)
2015年增加使用省份:江西(语文 数学 英语)、山东(英语)
2017年增加使用省份:湖北、广东、陕西、四川、重庆、福建、安徽
贵州 甘肃 青海 西藏 黑龙江 吉林 宁夏 内蒙古 新疆 云南 辽宁 海南(语文 数学 英语)
2015年增加省份:辽宁 (语文 数学 英语)
>>>下一页查看?高考自主命题省份?
湖南高考科目安排
150分。根据查询湖南高考网信息显示,2017年湖南高考英语单科满分150分。高考是普通高等学校招生全国统一考试,合格的高中毕业生或具有同等学力的考生参加的选拔性考试。高考通常于每年的6月份举行,考试科目包括语文、数学、外语和文综或理综等,总分为750分。高考成绩是中国高等学校录取新生的重要依据,也是考生对自己能力的检验和提升。
湖南高考数学知识点总结
湖南高考科目安排包括语文、数学、英语三个必考科目,以及生物、物理、化学、历史、地理、政治六个选考科目。
1.必考科目和选考科目
湖南高考共九门科目,其中语文、数学、英语为必考科目,而生物、物理、化学、历史、地理、政治为选考科目。
2.高考科目划分和难度
高考科目的划分基于教育部门的课程设置,而每个科目的难度也有所不同。在选考科目中,生物和地理的难度较低,而化学和物理的难度相对较高。
3.高考考点分布
考点分布也是高考备考过程中需要关注的重要问题。根据以往经验,在语文科目中,阅读理解和作文是考试重点。而在数学科目中,函数和几何题是考试难点。
4.高考改革和未来走向
高考一直是中国教育改革的热点话题之一。近年来,一些省份开始进行综合素质评价的尝试,将多种能力与技能考察纳入到考试内容之中,湖南省也在相应的改革探索中。
5.高考备考和策略
高考备考是一个漫长而艰辛的过程,有明确的目标和恰当的策略对于备考过程至关重要。其中,分阶段计划、科学合理的时间规划等都是成功备考的必要条件。
6.高考成绩和录取方式
高考成绩是每个考生获得状元榜的重要标准,而录取方式则直接影响着高考成绩的最终价值。湖南高校普遍采用综合评价和分数线相结合的录取方式。
7.高考与就业压力
高考不仅关系到学生的学业前途,也与之后的职业道路息息相关。当前,就业压力日益加剧,许多人选择考取专业性强、就业前景好的专业或者考研深造。
8.社会对高考的看法
高考一直受到社会各界的广泛关注和讨论。一方面,高考被视为衡量一个人能力和素质的重要标准;另一方面,一些人则认为过度看重高考成绩会导致人才流失和资源浪费。
9.总结
湖南高考科目安排涵盖了多个学科,考试内容也是多种多样的。备考过程中需要注意分阶段计划和恰当策略,成绩与录取方式、就业压力和社会看法等也是需要关注的重要问题。让我们以科学的态度面对高考,不断提升自己,迎接未来的挑战!
湖南高考2000年以来状元姓名,各出自哪所学校?
考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。下面是我为大家整理的高考数学知识点,希望对大家有所帮助!
高考文科数学考点总结第一,函式与导数。主要考查 *** 运算、函式的有关概念定义域、值域、解析式、函式的极限、连续、导数。
第二,平面向量与三角函式、三角变换及其应用。这一部分是高考微博的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计。这部分和我们的生活联络比较大,属应用题。
第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。
第七,解析几何。是高考的难点,运算量大,一般含引数。
湖南高考文科数学考点一:直线方程
1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.
注:①当或时,直线垂直于轴,它的斜率不存在.
②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.
2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.
特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.
注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.
附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点0,的直线束.②当为定值,变化时,它们表示一组平行直线.
3. ⑴两条直线平行:
∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.
一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且
推论:如果两条直线的倾斜角为则∥.
⑵两条直线垂直:
两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. 即是垂直的充要条件
4. 直线的交角:
⑴直线到的角方向角;直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.
⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.
5. 过两直线的交点的直线系方程为引数,不包括在内
湖南高考文科数学考点二:轨迹方程
一、求动点的轨迹方程的基本步骤
⒈建立适当的座标系,设出动点M的座标;
⒉写出点M的 *** ;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、引数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的座标x,y表示相关点P的座标x0、y0,然后代入点P的座标x0,y0所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋引数法:当动点座标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做引数法。
⒌交轨法:将两动曲线方程中的引数消去,得到不含引数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
湖南高考文科数学考点三:导数
一、函式的单调性
在a,b内可导函式fx,f′x在a,b任意子区间内都不恒等于0.
f′x≥0?fx在a,b上为增函式.
f′x≤0?fx在a,b上为减函式.
二、函式的极值
1、函式的极小值:
函式y=fx在点x=a的函式值fa比它在点x=a附近其它点的函式值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函式y=fx的极小值点,fa叫做函式y=fx的极小值.
2、函式的极大值:
函式y=fx在点x=b的函式值fb比它在点x=b附近的其他点的函式值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函式y=fx的极大值点,fb叫做函式y=fx的极大值.
极小值点,极大值点统称为极值点,极大值和极小值统称为极值.
三、函式的最值
1、在闭区间[a,b]上连续的函式fx在[a,b]上必有最大值与最小值.
2、若函式fx在[a,b]上单调递增,则fa为函式的最小值,fb为函式的最大值;若函式fx在[a,b]上单调递减,则fa为函式的最大值,fb为函式的最小值.
四、求可导函式单调区间的一般步骤和方法
1、确定函式fx的定义域;
2、求f′x,令f′x=0,求出它在定义域内的一切实数根;
3、把函式fx的间断点即fx的无定义点的横座标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函式fx的定义区间分成若干个小区间;
4、确定f′x在各个开区间内的符号,根据f′x的符号判定函式fx在每个相应小开区间内的增减性.
湖南高考文科数学考点四:不等式
1理解不等式的性质及其证明。
导读
不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较。要注意以下几点:
加强化归意识,把比较大小问题转化为实数的运算;
通过复习强化不等式“运算”的条件。如a>b、才c>d在什么条件下才能推出ac>bd;
强化函式的性质在大小比较中的重要作用,加强知识间的联络;
不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0 a>b,a-b=0 a=b,a-b<0 a
一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;
对两个或两个以上不等式同加或同乘时一定要注意不等式是否同向且大于零;
对于含参问题的大小比较要注意分类讨论。
2掌握两个不扩充套件到三个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。
导读
1、在证明不等式的各种方法中,作差比较法是一种最基本最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握。
2、对于公式a+b≥ 2√ab,ab≤a+b/22要理解它们的作用和使用条件及内在联络,两个公式也体现了ab和a+b的转化关系。
3、在应用均值定理求最值时,要把握定理成立的三个条件就是“一正——各项均为正;二定——积或和为定值;三项等——等号能否取得”。若忽略了某个条件,就会出现错误。
3掌握分析法、综合法、比较法证明的简单不等式。
导读
1、在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程。有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证明目的。
2、由于高考试题不会出现单一的不等式的证明题,常常与函式、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,比如比较大小。证明不等式的常用方法有:差、商比较法、函式性质法、分析综合法和放缩法。要能了解常见的放缩途径,如:利用增或舍、分式性质、函式单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等。有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用。
3、比较法有两种形式:一是作差,而是作商。用作差法证明不等式是证明不等式中最基本、最常用的方法。它的依据是不等式的基本性质。步骤是:作差商→变形→判断。变形的目的是为了判断,若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式。若是作商,两边为正,就判断与1的大小关系。
湖南高考文科数学考点五:几何
1棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
3棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
4圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
7球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 看过"湖南高考数学知识点 湖南高考文科数学考点 "的还:
郴州2017高考是不是用湖南卷
1、2015年湖南省高考文理科状元
文科状元:顾殊涵
总分:680分
学校:桑植一中
理科状元:孙嘉玮
总分:718分
学校:师大附中
2、2016年湖南省高考文理科状元
文科状元:李丹
总分:666分
学校:永顺一中
理科状元:杨程远
总分:706分
学校:长郡中学
3、2017年湖南省高考文理科状元
文科状元:雷咏荃
总分:681分
学校:浏阳一中
理科状元:李啸宇
总分:703分
学校:双峰一中
4、2018年湖南省高考文理科状元
文科状元:刘宇薇
总分:701分
学校:长沙雅礼中学
理科状元:王松源
总分:704分
学校:长郡中学
5、2019年湖南省高考文理科状元
文科状元:黄滨郦
总分:681分
学校:澧县一中
理科状元:孟昕霓
总分:702分
学校:常德一中
2020高考还没开始,图图和大家一起来竞猜文理科状元会花落谁家呢?
根据三年前优生招录信息以及联考情况来看,图图猜测今年状元出自:
文科状元:雅礼中学
理科状元:石门一中
2017年湖南省高考分数线
1、郴州2017高考不是用湖南卷,而是使用全国卷。
2、2015年6月,教育部正式批复同意湖南省、福建省等7省(市)从2016年起普通高校招生统一考试使用全国卷。
2004年,湖南省开始对语文、数学、外语3科实施自主命题,文科综合、理科综合则一直使用全国卷。从2016年开始,湖南省将正式恢复至全部使用全国卷。
湖南高考录取分数线:历史类本科线为451分,专科线为200分;物理类本科线为414分,专科线为200分。
此外,特殊类型招生录取控制分数线为历史类499分、物理类475分,该分数线将作为军事院校、高水平艺术团和高校专项计划等部分特殊类型招生和部分高校招生时的参考线。
志愿填报时间安排如下:
6月26日8∶00至27日17∶00,填报本科提前批志愿和本科批特殊类型志愿。
6月29日8∶00至7月2日17∶00,填报本科批普通志愿(不含特殊类型志愿)和专科提前批志愿。
本科批录取结束后,8月6日8∶00至8日17∶00,填报高职专科批志愿。
查询成绩法:
考生可以登录湖南教育政务网、湖南省普通高校招生考试考生综合信息平台和湖南招生考试信息港查询高考成绩,也可通过潇湘高考APP、微信公众号“湘微教育”和“湖南考试招生”查询高考成绩。
湖南省教育考试院将努力做好相关技术保障工作,也提醒广大考生注意错峰上网查询,以防止出现网络拥堵情况。
以上内容参考?湖南省人民政府-重磅!2022年湖南高考录取线出炉