您现在的位置是: 首页 > 教育资讯 教育资讯

高考数学归纳法原题,高考数学归纳法

tamoadmin 2024-05-30 人已围观

简介1.高考数学必考知识点归纳总结2.2021高考数学知识点归纳总结:数学公式大全高中必背(完整版)3.第一,第二数学归纳法4.数学归纳法一步两项问题浅谈数学归纳法的应用数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。一、用数学归纳法证明整除问题用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设

1.高考数学必考知识点归纳总结

2.2021高考数学知识点归纳总结:数学公式大全高中必背(完整版)

3.第一,第二数学归纳法

4.数学归纳法一步两项问题

高考数学归纳法原题,高考数学归纳法

浅谈数学归纳法的应用

数学归纳法是证明与自然数有关的命题的一种方法,应用广泛.在最近几年的高考试卷中体现的特别明显,以下通过几道高考试题来谈一谈数学归纳法的应用。

一、用数学归纳法证明整除问题

用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。

例1、是否存在正整数m,使得f(n)=(2n+7)?3n+9对任意自然数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.

证明:解:由f(n)=(2n+7)?3n+9,得f(1)=36, f(2)=3×36, f(3)=10×36, f(4)=34×36,由此猜想m=36.

下面用数学归纳法证明:

(1)当n=1时,显然成立.

(2)假设n=k时, f(k)能被36整除,即f(k)=(2k+7)?3k+9能被36整除;当n=k+1时,[2(k+1)+7]?3k+1+9=3[(2k+7)?3k+9]+18(3k--1-1),

由于3k-1-1是2的倍数,故18(3k-1-1)能被36整除.这就是说,当n=k+1时,f(n)也能被36整除.

由(1)(2)可知对一切正整数n都有f(n)=(2n+7)?3n+9能被36整除,m的最大值为36.

二、用数学归纳法证明恒等式问题

对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性.

例2、是否存在常数 ,使得等式 对一切自然数 成立?并证明你的结论.

解:假设存在 ,使得题设的等式成立,则当时 也成立,代入得

解得 ,于是对 ,下面等式成立:

假设 时上式成立,即

那么

.........

高考数学必考知识点归纳总结

在中学数学教材和高考园地里,使用的数学归纳法一般都是以下列形式出现的:

“1对”;假设“n对”,那么“n+1也对”.

应该指出,上述形式是数学归纳法的基本形式,但不是唯一的形式.

第二数学归纳法可以概括为

详细地说,它分为以下三步:

(1)奠基:证明n=1时命题成立;

(2)归纳假设:设n≤k时命题成立;(区别在此步)

(3)归纳递推:由归纳假设推出n=k+1时命题也成立.

显然,第二数学归纳法与数学归纳法基本形式的区别在于归纳假设.

2021高考数学知识点归纳总结:数学公式大全高中必背(完整版)

 面对即将到来的高考,还没有确定学习计划的同学们,以下是由我为大家整理的“高考数学必考知识点归纳总结 ”,仅供参考,欢迎大家阅读。

  高中数学重要知识点归纳

 1.必修课程由5个模块组成:

 必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)

 必修2:立体几何初步、平面解析几何初步。

 必修3:算法初步、统计、概率。

 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。

 必修5:解三角形、数列、不等式。

 以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。

  选修课程分为4个系列:

 系列1:2个模块

 选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。

 选修1-2:统计案例、推理与证明、数系的扩充与复数、框图

 系列2: 3个模块

 选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何

 选修2-2:导数及其应用、推理与证明、数系的扩充与复数

 选修2-3:计数原理、随机变量及其分布列、统计案例

 选修4-1:几何证明选讲

 选修4-4:坐标系与参数方程

 选修4-5:不等式选讲

2.高考数学必考重难点及其考点:

 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数

 难点:函数,圆锥曲线

  高考相关考点:

 1. 集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

 2. 函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用

 3. 数列:数列的有关概念、等差数列、等比数列、数列求通项、求和

 4. 三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用

 5. 平面向量:初等运算、坐标运算、数量积及其应用

 6. 不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

 7. 直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

 8. 圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

 9. 直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量

 10. 排列、组合和概率:排列、组合应用题、二项式定理及其应用

 11. 概率与统计:概率、分布列、期望、方差、抽样、正态分布

 12. 导数:导数的概念、求导、导数的应用

 13. 复数:复数的概念与运算

  高中数学易错知识点整理

 一.集合与函数

 1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.

 2.在应用条件时,易A忽略是空集的情况

 3.你会用补集的思想解决有关问题吗?

 4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

 5.你知道“否命题”与“命题的否定形式”的区别.

 6.求解与函数有关的问题易忽略定义域优先的原则.

 7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.

 8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.

 9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.

 10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法

 11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.

 12.求函数的值域必须先求函数的定义域。

 13.如何应用函数的单调性与奇偶性解题?①比较函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

 14.解对数函数问题时,你注意到真数与底数的限制条件了吗?

 (真数大于零,底数大于零且不等于1)字母底数还需讨论

 15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

 16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

 17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

  二.不等式

 18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.

 19.绝对值不等式的解法及其几何意义是什么?

 20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?

 21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.

 22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.

 23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a<0.

  三.数列

 24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?

 25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。

 26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?

 27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)

 28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。

  四.三角函数

 29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?

 30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?

 31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?

 32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)

 33.反正弦、反余弦、反正切函数的取值范围分别是

 34.你还记得某些特殊角的三角函数值吗?

 35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?

 36.函数的图象的平移,方程的平移以及点的平移公式易混:

 (1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.

 (2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.

 (3)点的平移公式:点按向量平移到点,则.

 37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)

 38.形如的周期都是,但的周期为。

 39.正弦定理时易忘比值还等于2R.

  五.平面向量

 40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。

 41.数量积与两个实数乘积的区别:

 在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.

 已知实数,且,则a=c,但在向量的数量积中没有.

 在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.

 42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。

  六.解析几何

 43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?

 44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。

 45.直线的倾斜角、到的角、与的夹角的取值范围依次是。

 46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?

 47.对不重合的两条直线

 (建议在解题时,讨论后利用斜率和截距)

 48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。

 49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列平行线,找到并求出最优解⑦应用题一定要有答。)

 50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?

 51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?

 52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?

 53.通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)

 54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).

 55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?

  七.立体几何

 56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。

 57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?

 58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见

 59.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.

 60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.

 61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。

 62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?

 63.两条异面直线所成的角的范围:0°<α≤90°

 直线与平面所成的角的范围:0o≤α≤90°

 二面角的平面角的取值范围:0°≤α≤180°

 64.你知道异面直线上两点间的距离公式如何运用吗?

 65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。

 66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?

 67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)

 68.球及其性质;经纬度定义易混.经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式.这些知识你掌握了吗?

  八.排列、组合和概率

 69.解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.

 解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;定序问题倍缩法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法.

 70.二项式系数与展开式某一项的系数易混,第r+1项的二项式系数为。二项式系数最大项与展开式中系数最大项易混.二项式系数最大项为中间一项或两项;展开式中系数最大项的求法要用解不等式组来确定r.

 71.你掌握了三种常见的概率公式吗?(①等可能事件的概率公式;②互斥事件有一个发生的概率公式;③相互独立事件同时发生的概率公式.)

 72.二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。

 通项公式:它是第r+1项而不是第r项;

 事件A发生k次的概率:.其中k=0,1,2,3,…,n,且0

 73.求分布列的解答题你能把步骤写全吗?

 74.如何对总体分布进行估计?(用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;理解频率分布直方图矩形面积的几何意义.)

 75.你还记得一般正态总体如何化为标准正态总体吗?(对任一正态总体来说,取值小于x的概率,其中表示标准正态总体取值小于的概率)

 以上都是高考数学必考知识点高中数学重点知识归纳具体内容,同学可以按照以上知识点和重点知识归纳去学习。

第一,第二数学归纳法

高中数学是一门比较占分的科目,有繁多的公式和数值,让很多的同学感到头疼。下面我为大家整理的《高中数学知识点归纳总结及高中数学公式大全(完整版)》,仅供大家参考。

1.集合与函数

内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,

若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。分母不能等于0,

偶次方根须非负,零和负数无对数;

正切函数角不直,余切函数角不平;

其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;

图象互为轴对称,Y=X是对称轴;

求解非常有规律,反解换元定义域;

反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;

函数性质看指数,奇母奇子奇函数,

奇母偶子偶函数,偶母非奇偶函数;

图象第一象限内,函数增减看正负。

2.三角函数

三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;

中心记上数字1,连结顶点三角形;

向下三角平方和,倒数关系是对角,

变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,

将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,

余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,

保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;

1加余弦想余弦,1减余弦想正弦,

幂升一次角减半,升幂降次它为范;

三角函数反函数,实质就是求角度,

先求三角函数值,再判角取值范围;

利用直角三角形,形象直观好换名,

简单三角的方程,化为最简求解集;

3.不等式

解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

4.数列

等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,

取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:

一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:

首先验证再假定,从K向着K加1,

推论过程须详尽,归纳原理来肯定。

5.复数

虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,

减法三角法则判;乘法除法的运算,

逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,

两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

6.排列、组合、二项式定理

加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

7.立体几何

点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

8.平面解析几何

有向线段直线圆,椭圆双曲抛物线,

参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,

两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;

都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,

给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;

平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学

数学归纳法一步两项问题

第一数学归纳法可以概括为以下三步:

(1)归纳奠基:证明n=1时命题成立;

(2)归纳假设:假设n=k时命题成立;

(3)归纳递推:由归纳假设推出n=k+1时命题也成立.

第二数学归纳法原理是设有一个与自然数n有关的命题,如果:

(1)当n=1时,命题成立;

(2)假设当n≤k时命题成立,由此可推得当n=k+1时,命题也成立。

那么,命题对于一切自然数n来说都成立。

扩展资料:

在数论中,数学归纳法是以一种不同的方式来证明任意一个给定的情形都是正确的(第一个,第二个,第三个,一直下去概不例外)的数学定理。

虽然数学归纳法名字中有“归纳”,但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的演绎推理法。事实上,所有数学证明都是演绎法。

数学归纳法对解题的形式要求严格,数学归纳法解题过程中,

第一步:验证n取第一个自然数时成立

第二步:假设n=k时成立,然后以验证的条件和假设的条件作为论证的依据进行推导,在接下来的推导过程中不能直接将n=k+1代入假设的原式中去。

最后一步总结表述。

需要强调是数学归纳法的两步都很重要,缺一不可。

数学归纳法的原理,通常被规定作为自然数公理(参见皮亚诺公理)。但是在另一些公理的基础上,它可以用一些逻辑方法证明。数学归纳法原理可以由下面的良序性质(最小自然数原理)公理可以推出:

自然数集是良序的。(每个非空的正整数集合都有一个最小的元素)

比如{1, 2, 3 , 4, 5}这个正整数集合中有最小的数——1.

下面我们将通过这个性质来证明数学归纳法:

对于一个已经完成上述两步证明的数学命题,我们假设它并不是对于所有的正整数都成立。

对于那些不成立的数所构成的集合S,其中必定有一个最小的元素k。(1是不属于集合S的,所以k>1)

k已经是集合S中的最小元素了,所以k-1是不属于S,这意味着k-1对于命题而言是成立的——既然对于k-1成立,那么也对k也应该成立,这与我们完成的第二步骤矛盾。所以这个完成两个步骤的命题能够对所有n都成立。

注意到有些其它的公理确实是数学归纳法原理的可选的公理化形式。更确切地说,两者是等价的。

参考资料:

百度百科——数学归纳法

数学归纳法解题

数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.

●难点磁场

(★★★★)是否存在a、b、c使得等式1?22+2?32+…+n(n+1)2= (an2+bn+c).

●案例探究

〔例1〕试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相等时,均有:an+cn>2bn.

命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.

知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.

错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.

技巧与方法:本题中使用到结论:(ak-ck)(a-c)>0恒成立(a、b、c为正数),从而ak+1+ck+1>ak?c+ck?a.

证明:(1)设a、b、c为等比数列,a= ,c=bq(q>0且q≠1)

∴an+cn= +bnqn=bn( +qn)>2bn

(2)设a、b、c为等差数列,则2b=a+c猜想 >( )n(n≥2且n∈N*)

下面用数学归纳法证明:

①当n=2时,由2(a2+c2)>(a+c)2,∴

②设n=k时成立,即

则当n=k+1时, (ak+1+ck+1+ak+1+ck+1)

> (ak+1+ck+1+ak?c+ck?a)= (ak+ck)(a+c)

>( )k?( )=( )k+1

〔例2〕在数列{an}中,a1=1,当n≥2时,an,Sn,Sn- 成等比数列.

(1)求a2,a3,a4,并推出an的表达式;

(2)用数学归纳法证明所得的结论;

(3)求数列{an}所有项的和.

命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.

知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.

错解分析:(2)中,Sk=- 应舍去,这一点往往容易被忽视.

技巧与方法:求通项可证明{ }是以{ }为首项, 为公差的等差数列,进而求得通项公式.

解:∵an,Sn,Sn- 成等比数列,∴Sn2=an?(Sn- )(n≥2) (*)

(1)由a1=1,S2=a1+a2=1+a2,代入(*)式得:a2=-

由a1=1,a2=- ,S3= +a3代入(*)式得:a3=-

同理可得:a4=- ,由此可推出:an=

(2)①当n=1,2,3,4时,由(*)知猜想成立.

②假设n=k(k≥2)时,ak=- 成立

故Sk2=- ?(Sk- )

∴(2k-3)(2k-1)Sk2+2Sk-1=0

∴Sk= (舍)

由Sk+12=ak+1?(Sk+1- ),得(Sk+ak+1)2=ak+1(ak+1+Sk- )

由①②知,an= 对一切n∈N成立.

(3)由(2)得数列前n项和Sn= ,∴S= Sn=0.

●锦囊妙记

(1)数学归纳法的基本形式

设P(n)是关于自然数n的命题,若

1°P(n0)成立(奠基)

2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.

(2)数学归纳法的应用

具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.

●歼灭难点训练

一、选择题

1.(★★★★★)已知f(n)=(2n+7)?3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为( )

A.30 B.26 C.36 D.6

2.(★★★★)用数学归纳法证明3k≥n3(n≥3,n∈N)第一步应验证( )

A.n=1 B.n=2 C.n=3 D.n=4

二、填空题

3.(★★★★★)观察下列式子: …则可归纳出_________.

4.(★★★★)已知a1= ,an+1= ,则a2,a3,a4,a5的值分别为_________,由此猜想an=_________.

三、解答题

5.(★★★★)用数学归纳法证明4 +3n+2能被13整除,其中n∈N*.

6.(★★★★)若n为大于1的自然数,求证: .

7.(★★★★★)已知数列{bn}是等差数列,b1=1,b1+b2+…+b10=145.

(1)求数列{bn}的通项公式bn;

(2)设数列{an}的通项an=loga(1+ )(其中a>0且a≠1)记Sn是数列{an}的前n项和,试比较Sn与 logabn+1的大小,并证明你的结论.

8.(★★★★★)设实数q满足|q|<1,数列{an}满足:a1=2,a2≠0,an?an+1=-qn,求an表达式,又如果 S2n<3,求q的取值范围.

参考答案

难点磁场

解:假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有

于是,对n=1,2,3下面等式成立

1?22+2?32+…+n(n+1)2=

记Sn=1?22+2?32+…+n(n+1)2

设n=k时上式成立,即Sk= (3k2+11k+10)

那么Sk+1=Sk+(k+1)(k+2)2= (k+2)(3k+5)+(k+1)(k+2)2

= (3k2+5k+12k+24)

= 〔3(k+1)2+11(k+1)+10〕

也就是说,等式对n=k+1也成立.

综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立.

歼灭难点训练

一、1.解析:∵f(1)=36,f(2)=108=3×36,f(3)=360=10×36

∴f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除.

证明:n=1,2时,由上得证,设n=k(k≥2)时,

f(k)=(2k+7)?3k+9能被36整除,则n=k+1时,

f(k+1)-f(k)=(2k+9)?3k+1?-(2k+7)?3k

=(6k+27)?3k-(2k+7)?3k

=(4k+20)?3k=36(k+5)?3k-2?(k≥2)

f(k+1)能被36整除

∵f(1)不能被大于36的数整除,∴所求最大的m值等于36.

答案:C

2.解析:由题意知n≥3,∴应验证n=3.

答案:C

二、3.解析:

(n∈N*)

(n∈N*)

、 、 、

三、5.证明:(1)当n=1时,42×1+1+31+2=91能被13整除

(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,

42(k+1)+1+3k+3=42k+1?42+3k+2?3-42k+1?3+42k+1?3

=42k+1?13+3?(42k+1+3k+2?)

∵42k+1?13能被13整除,42k+1+3k+2能被13整除

∴当n=k+1时也成立.

由①②知,当n∈N*时,42n+1+3n+2能被13整除.

6.证明:(1)当n=2时,

(2)假设当n=k时成立,即

7.(1)解:设数列{bn}的公差为d,由题意得 ,∴bn=3n-2

(2)证明:由bn=3n-2知

Sn=loga(1+1)+loga(1+ )+…+loga(1+ )

=loga〔(1+1)(1+ )…(1+ )〕

而 logabn+1=loga ,于是,比较Sn与 logabn+1?的大小 比较(1+1)(1+ )…(1+ )与 的大小.

取n=1,有(1+1)=

取n=2,有(1+1)(1+

推测:(1+1)(1+ )…(1+ )> (*)

①当n=1时,已验证(*)式成立.

②假设n=k(k≥1)时(*)式成立,即(1+1)(1+ )…(1+ )>

则当n=k+1时,

,即当n=k+1时,(*)式成立

由①②知,(*)式对任意正整数n都成立.

于是,当a>1时,Sn> logabn+1?,当 0<a<1时,Sn< logabn+1?

8.解:∵a1?a2=-q,a1=2,a2≠0,

∴q≠0,a2=- ,

∵an?an+1=-qn,an+1?an+2=-qn+1?

两式相除,得 ,即an+2=q?an

于是,a1=2,a3=2?q,a5=2?qn…猜想:a2n+1=- qn(n=1,2,3,…)

综合①②,猜想通项公式为an=

下证:(1)当n=1,2时猜想成立

(2)设n=2k-1时,a2k-1=2?qk-1则n=2k+1时,由于a2k+1=q?a2k-1?

∴a2k+1=2?qk即n=2k-1成立.

可推知n=2k+1也成立.

设n=2k时,a2k=- qk,则n=2k+2时,由于a2k+2=q?a2k?,

所以a2k+2=- qk+1,这说明n=2k成立,可推知n=2k+2也成立.

综上所述,对一切自然数n,猜想都成立.

这样所求通项公式为an=

S2n=(a1+a3…+a2n-1)+(a2+a4+…+a2n)

=2(1+q+q2+…+qn-1?)- (q+q2+…+qn)

由于|q|<1,∴ =

依题意知 <3,并注意1-q>0,|q|<1解得-1<q<0或0<q< 1

数学归纳法证题应注意之一、二、三

数学归纳法 作为数学命题证明的一种基本方法,可以完成对许多与自然数相关的命题的证明。当然任何一种方法的应用都有它的局限性,数学归纳法也不例外。

例 求证: 。

证法一:记 。

∵ , , , ,

∴当 时有 成立。以下先证 ( 时)

① 当 时,显然成立;

② 假设 ( )时成立,即 ,

则 。

即当 时, 成立。

由①与②,对于 且( )有 成立。

从而有 ( )成立。

证法二:记 ,

则 ,

因为每个括号中的值均为正,所以 成立。又当 时,

当 时, 。

所以对于 , 成立。

一、从以上的证法中可以看出,并不是所有的关于自然数的命题都必须用数学归纳法来证明;在许多的情况下,用其它方法证明比数学归纳法要简捷、方便。

例1 求证: ( )

证法一:①当 时,有 成立。

②假设当 时结论成立,则当 时,

即当 时,命题成立。所以 时, 成立。

证法二:∵ , ∴欲证 ,只须证 , ∵ ∴ 成立,

∴ ( )成立。

证法三:左边= 右边。

∴左边<右边,即 ( )成立。

比较以上证明方法:证法一显然比证法二、三都复杂,且证明过程易“貌似神离”(即在证明当 时,没有应用归纳假设;即当 时直接用 = 来证明)。

二、许多有关自然数 的命题在用数学归纳法证明前,必须变换命题,否则不能用归纳法直接证明。特别是 ( 是常数)型的不等式,当 是随 递增时更是如此。此时应把命题中的常数 改为小于 且 的递增的函数。

例2 求证: ( )

不等式的左边 是关于 是递增的,右边为常数2,所以考虑变换命题,一般是把右边的常数2改为关于 的递增函数 ,而得更强的命题:求证:

( )(人民出版社出版《代数》(下册)1990版第122页习题6第⑵小题)。此命题很容易用数学归纳法证明。

例3 求证:

记 ,若用数学归纳法证明,则须变换命题,使之成为 (其中 )。事实上,当 时, ,所以这里的 是很小的,找出适合条件的 的表达式也较困难。若直接用证明不等式的缩放法,则比较容易证得。

例4 设 ,且 , ,证明: 。

在应用数学归纳法证明时,仅由归纳假设 ,只能推得 ,而不能确定 。为使 ,还须先有 ,而这一点在归纳假设中是无法得到的,从而须考虑更强的命题:设 ,且 , ,证明:当 , 。这是一个容易证得的命题。

文章标签: # 证明 # 数学 # 成立