您现在的位置是: 首页 > 教育改革 教育改革

江苏高考应用题数学,江苏高考数学大题题型

tamoadmin 2024-08-01 人已围观

简介1.江苏高考数学包括哪些内容具体2.2012江苏高考数学难度怎样3.2011江苏高考数学试卷难度怎么样?4.2019年江苏高考数学试卷答案点评和难度解析5.江苏数学有多难6.高考数学应用题有哪些类型?高考在即,每名考生都希望发挥出自己应有的水平,避免不当失分,那么掌握一些基本的答题技巧是至关重要的。考前准备1调适心理,增强信心(1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考;(2)合理

1.江苏高考数学包括哪些内容具体

2.2012江苏高考数学难度怎样

3.2011江苏高考数学试卷难度怎么样?

4.2019年江苏高考数学试卷答案点评和难度解析

5.江苏数学有多难

6.高考数学应用题有哪些类型?

江苏高考应用题数学,江苏高考数学大题题型

高考在即,每名考生都希望发挥出自己应有的水平,避免不当失分,那么掌握一些基本的答题技巧是至关重要的。

考前准备

1

调适心理,增强信心

(1)合理设置考试目标,创设宽松的应考氛围,以平常心对待高考;

(2)合理安排饮食,提高睡眠质量;

(3)保持良好的备考状态,不断进行积极的心理暗示;

(4)静能生慧,稳定情绪,净化心灵,满怀信心地迎接即将到来的考试。

2

悉心准备,不紊不乱

(1)重点复习,查缺补漏。对前几次模拟考试的试题分类梳理、整合,既可按知识分类,也可按数学思想方法分类。强化联系,形成知识网络结构,以少胜多,以不变应万变。

(2)查找错题,分析病因,对症下药,这是重点工作。

(3)阅读《考试说明》和《试题分析》,确保没有知识盲点。

(4)回归课本,回归基础,回归近年高考试题,把握通性通法。

(5)重视书写表达的规范性和简洁性,掌握各类常见题型的表达模式,避免“会而不对,对而不全”现象的出现。

(6)临考前应做一定量的中、低档题,以达到熟悉基本方法、典型问题的目的,一般不再做难题,要保持清醒的头脑和良好的竞技状态。

3

入场临战,通览全卷

最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事:

(1)填写好全部考生信息,检查试卷有无问题;

(2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);

(3)对于不能立即作答的题目,可一边通览,一边粗略地分为A、B两类:A类指题型比较熟悉、容易上手的题目;B类指题型比较陌生、自我感觉有困难的题目,做到心中有数。

END

高考数学题型特点和答题技巧

1

选择题——“不择手段”

2

题型特点

(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

3

解题策略

(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。

(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。

(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。

(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。

(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。

(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。

4

填空题——“直扑结果”

5

题型特点

填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。对考生独立思考和求解,在能力要求上会高一些。长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。

填空题的考点少,目标集中。否则,试题的区分度差,其考试的信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。

6

解题策略

由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:

一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;

二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。

7

解答题——“步步为营”

8

题型特点

解答题与填空题比较,同居提供型的试题,但也有本质的区别,首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。

9

评分办法

数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷经验的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。

解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。

10

解题策略

(1)常见失分因素:

①对题意缺乏正确的理解,应做到慢审题快做题;

②公式记忆不牢,考前一定要熟悉公式、定理、性质等;

③思维不严谨,不要忽视易错点;

④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;

⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;

⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。

(2)何为“分段得分”:

对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。

②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。

③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的性的步骤。实质性的步骤未找到之前,找性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。

(3)能力不同,要求有变:

由于考生的层次不同,面对同一张数学卷,要尽可能发挥自己的水平,考试策略也有所不同。针对基础较差、以二类本科为最高目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。针对第一志愿为名牌大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。

注意事项

仅供考生参考,各人还要结合自身特点答题。

江苏高考数学包括哪些内容具体

解析几何中的常用公式及技巧

1.

直线的倾斜角α的范围是[0,π)

2.

直线的倾斜角与斜率的变化关系:当倾斜角是锐角是,斜率k随着倾斜角α的增大而增大。当α是钝角时,k与α同增减。

3.

截距不是距离,截距相等时不要忘了过原点的特殊情形。

4.

两直线:L1

A1x+B1y+C1=0

L2:

A2x+B2y+C2=0

L1⊥L2

A1A2+B1B2=0

5.

两直线的到角公式:L1到L2的角为θ,tanθ=

夹角为θ,tanθ=|

|

注意夹角和到角的区别

6.

点到直线的距离公式,两平行直线间距离的求法。

7.

有关对称的一些结论

1.点(a,b)关于x轴、y轴、原点、直线y=x的对称点分别是

(a,-b),(-a,b),(-a,-b),(b,a)

2..点和圆的位置关系的判别转化为点到圆心的距离与半径的大小关系。

点P(x0,y0),圆的方程:(x-a)2+(y-b)2=r2.

如果(x0-a)2+(y0-b)2>r2

点P(x0,y0)在圆外;

如果

(x0-a)2+(y0-b)2<r2

点P(x0,y0)在圆内;

如果

(x0-a)2+(y0-b)2=r2

点P(x0,y0)在圆上。

3.圆上一点的切线方程:点P(x0,y0)在圆x2+y2=r2上,那么过点P的切线方程为:x0x+y0y=r2.

4.过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与x轴垂直的直线。

5.直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题。d>r

相离

d=r

相切

d<r

相交

6.圆与圆的位置关系,经常转化为两圆的圆心距与两圆的半径之间的关系。设两圆的圆心距为d,两圆的半径分别为r,R

d>r+R

两圆相离

d=r+R

两圆相外切

|R-r|<d<r+R

两圆相交

d=|R-r|

两圆相内切

d<|R-r|

两圆内含

d=0,两圆同心。

7.两圆相交弦所在直线方程的求法:

圆C1的方程为:x2+y2+D1x+E1y+C1=0.圆C2的方程为:x2+y2+D2x+E2y+C2=0.

把两式相减得相交弦所在直线方程为:(D1-D2)x+(E1-E2)y+(C1-C2)=0

8.圆上一定到某点或者某条直线的距离的最大、最小值的求法。

9.焦半径公式:在椭圆

=1中,F1、F2分别左右焦点,P(x0,y0)是椭圆是一点,则:(1)|PF1|=a+ex0

|PF2|=a-ex0

10.圆锥曲线中到焦点的距离问题经常转化为到准线的距离。

11.直线y=kx+b和圆锥曲线f(x,y)=0交于两点P1(x1,y1)

,P2(x2,y2)则弦长P1P2=

2012江苏高考数学难度怎样

第1到10题:填空题。

第11题:函数与导数,根据题目意思求函数的极值小值点即为零点,求到a的值即可求函数最大值与最小值.

第12题:根据题目意思设点,利用垂直得到等量关系.即可解决

第14题:方法众多,考查基本不等式.

第14题:等差与等比数列前N项和公式的应用,可用列举法解决.

第15题:立体几何证明平行与垂直,难度不大.

第16题:三角函数的和差公式、二倍角公式的应用.不难,但基础功底要厚实.

第17题:三角函数的实际应用,函数与导数求最值

第18题:圆锥曲线问题:其实是常规题,计算上有一定要求,在平常考试中也就这样的题目了.并不偏.

第19、20题:不盼着都拿满分,好歹这题是有区分度的,满分很难,但得到一定的分数还是比较简单的。

高考数学压轴题难度规律:

1、高考中的压轴题通常第一问和第二小问是第三问的解题关键,所以第一问和第二问也是第三问的基础。第一问与第二问的计算通常会有简便,但是又不会轻易想到的办法。

2、高考中数学的压轴题型基本上是固定的几种,所以这时候有针对的练习是有作用的,而这几种题型的一个基本特点就是灵活,设置灵活,解题灵活,思路灵活。

3、最后一道题目的计算量通常较大,考升往往会在一边想思路,但是又一边计算着繁琐的题目中失去耐心。

2011江苏高考数学试卷难度怎么样?

先不说难不难 我们先探讨和交流一下 我的感受就是不顺手。首先我感觉风格变化还是满大的,小题来讲,前十一题还是没有什么风格可言的,因为是基础题和容易题嘛,我们主要谈十二到十四和一些解答题。十二题来讲仍然是圆和直线的新题鄙人由于心理素质思维水平等因素所限没有做出来。十三题的二次不等式还是较简单和容易下手的。十四题来讲也因水平所限选择了放弃,有些遗憾。所以我对小题的感受是,还是基本符合期望的。 谈大题的话我就比较郁闷了,三角题我第二问就是想用余弦定理的竟然没做出来(大哭)。应用题第二问到了关于k的表达式没做到底。函数题就比较简单了但问题是人家准备了一年的求参数范围或讨论参数范围研究函数性质就无用武之地了。到了十九题又由于心理因素和水平所限后两问没怎么看哪。数列就比较更惨了,鄙人没看到和找到方法啊,瞎画一通,在考前我还以为是08式论证呢,谁知道…完全找不到抓手(大哭)。 附加题前两题竟然计算量加大,比前几年,第三题糊里糊涂(大哭),第四题没读懂!啊! 问我难不难我说一言难尽!(大哭)

2019年江苏高考数学试卷答案点评和难度解析

我弟高考生,他说不难,语文难

去年江苏数学试卷号称“史上最难”,今年总体难度与去年相比低了不少。

一、试卷内容上体现新课程理念,贴近中学数学教学,坚持对基础知识、基本技能以及数学思想方法的考 查。在保持稳定的基础上,进行了适度的改革。试卷有点先易后难的感觉,大约有120分基本题,但有些题考生易错,中档题和高难题比例也较合理。试卷的题型主要感觉一是新颖,二是灵活。有三道大题,第一个是三角函数,第二个是立体几何图形题,第三个是应用题,难度与去年的高考(微博)试卷比都要相对简单。

二、试卷淡化了特殊的技巧,全面考查通性通法,体现了以知识为载体,以方法为依托,以能力考查为目 的的命题要求。

三、加强应用意识,体现现实联系。如第17题考查的是一个设计一个包装盒的实际问题,重点考查考生对现实问题的数学理解。

四、感觉今年的试题突出考查了学科主干知识。试题从学科整体意义的高度考虑问题,注重知识之间的交 叉、渗透和综合,以检验考生能否形成一个有序的网络化知识体系。

江苏数学有多难

江苏高考数学试卷答案点评和难度解析

7日下午江苏高考第二科数学考试结束。据考生反馈,今年数学的“压轴题”较难。南京市第三高级中学数学教师范书韵也表示,此次试题有一定区分度,比2013年江苏高考的数学试题要难一些。

范书韵同时指出,今年的数学试题仍然重视基础,考察了8个C级考点,知识点分布与往年一致。解答题前三题,分别考察了三角函数、立体几何、解析几何,相对比较基础、容易上手,从考生反馈的情况看,大部分考生这三题都比较容易上手。

后面的函数导数题、数列题则有一定难度,且每题三个小问之间难度依次增加,想全部答出不容易。此外,往年出现在试卷“上半场”的应用题今年移到了第18题(倒数第三题),难度也相应有所增加。

范书韵表示,今年总体难度应该说在考生心理预期的范围之内。在今年的《考试说明》中就曾明确指出,“有必要区分度和难度”,因此在复习及模拟考试中,老师和考生都做了一定准备。“总体而言,这是一份不错的试卷,整体结构平稳,设置一定区分度也有利于高校人才的选拔。”

高考数学应用题有哪些类型?

江苏数学有多难介绍如下:

江苏数学难度大,题型新颖,区分度好,历年来被视为业内标杆。2010年江苏高考数学题更是以平均分63分和附加题40分为特点,难度可想而知。没有选择题,时间紧张,分秒必争,题量大,题型新,题目难,决定了江苏高考数学的高度。大题部分知识涵盖面广,涉及三角、数列、立体几何、平面向量、解析几何、函数、应用题。葛军老师认为难什么难,都很基础。

高考数学考试答题技巧及方法

1.调整好状态,控制好自我。

(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。建议同学们提前15-20分钟到达考场。

2.通览试卷,树立自信。

刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。

3.提高解选择题的速度、填空题的准确度。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法?尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4.审题要慢,做题要快,下手要准。

题目本身就是破解这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5.保质保量拿下中下等题目。

中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

6.要牢记分段得分的原则,规范答题。

会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

应用题是高考中的重点之一,几乎每个省市,每年的高考试卷都有应用题出现,因此,总结高考数学应用题的常见类型,分析其解题模式,对学生有针对性地备战高考具有十分重要的意义。

一、函数、不等式类

此种类型是高考应用题的重点之一,依托函数多为分段函数、指数函数、二次函数及不等式组等。主要应用问题为极值问题,例如,生产成本的最小化、建筑材料的最少化、利润的最大化等。历年高考真题有2011四川理科卷第9题,2011湖北理科卷第11题,2000年全国卷等21题等。

解答此类应用题的关键和切入点是准确建立函数模型,这要求学生首先要明确实际问题的取值范围,认真分析题目中的重点词汇及数量关系,对题干中给出的已知量、未知量及常量进行归类有梳理,从而建立函数或不等式模式,进而解答试题。

二、概率型

此种类型应用题数量在高考数学试卷中所占比例最大,但难度不大,主要考查基本的概率知识,所涉及的应用问题非常多,例如,密码破译、不同等级产品的概率、骰子的点数等。例如,2010年江苏卷第22题,2011年全国卷第19题,2012陕西理科卷第20题等。

此类问题一般较为简单,主要考查学生对概率相关概念的掌握程度及公式的运用技巧。基本思路是在认真阅读题干的基础上分析出试题所考查的是何种变量或,然后运用此种变量或的公式去解答即可。此外,还应注意逆向思维的运用和结果的验证。

三、数列型

此种类型是应用题中最难的一类,尤其是与不等式问题结合之后。所考查的数列基本知识有初始项的提取、通项公式的求取、递推公式及前n项的和与某一项的关系等。所依托的实际问题涉及金融、平均增长率、等量增减等多个方面。例如,2005年春季上海第20题,2004年福建高考理科卷第20题等。

解答此类问题的关键是确定数列的类型,在此基础上根据题意构建数列的通项公式或递推公式,然后利用选定系数法或递推关系求解。

四、几何型

此种类型也是高考中的“大户”,借助的数学知识主要为三角函数,依托的实际问题涉及物理、测量、天文、航海等多个领域。例如,2010年江苏卷第17题,2010陕西高考理科第17题,2010福建高考理科第19题。

解答此类型应用题的关键是抽取数学模型,若没有示意图的应首先根据题意画出示意图,然后运用三角函数等相关知识解答即可。

此外,高考中数学应用题型还有集合型、立体几何型、解析几何型等,限于篇幅在此不做介绍。其实无论何种类型,应用题都应遵循审题—建模—求解—还原的基本思路。

文章标签: # 高考 # 题目 # 数学