您现在的位置是: 首页 > 教育改革 教育改革

17年高考数学试卷,17年高考真题数学

tamoadmin 2024-06-28 人已围观

简介1.2022年高考试卷(2022年高考试卷分类使用省份)2.福建省近几年高考卷 数学3.2023年高考数学试卷难吗4.高中数学考试技巧5.四川高考理科数学试卷难不难,难度系数点评答案解析 2010年普通高等学校招生全国统一考试(湖北卷) 数学(理工类)本试卷共4页,三大题21小题,全卷满分150分。考试用时120分钟。 祝考试顺利注意事项: 1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号

1.2022年高考试卷(2022年高考试卷分类使用省份)

2.福建省近几年高考卷 数学

3.2023年高考数学试卷难吗

4.高中数学考试技巧

5.四川高考理科数学试卷难不难,难度系数点评答案解析

17年高考数学试卷,17年高考真题数学

 2010年普通高等学校招生全国统一考试(湖北卷)

 数学(理工类)

本试卷共4页,三大题21小题,全卷满分150分。考试用时120分钟。

 ★祝考试顺利★

注意事项:

 1.答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上。并将准考证号条形码横贴在答题卡的指定位置。在用2B铅笔将答题卡上试卷类型A后的方框涂黑。

 2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试题卷、草稿纸上无效。

 3.填空题和解答题的作答:用0.5毫米黑色签字笔直接在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。

 4.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 为虚数单位,则=

 A.- B.-1 C. D.1

2.已知,则=

 A. B. C. D.

3.已知函数,若,则x的取值范围为

 A. B.

 C. D.

4.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为n,则

 A. n=0 B. n=1 C. n=2 D. n 3

 试卷类型:A

 5.已知随机变量服从正态分布,且P(<4)=,则P(0<<2)=

 A.0.6 B.0.4 C.0.3 D.0.2

 6.已知定义在R上的奇函数和偶函数满足(>0,且).若,则=

 A.2 B. C. D.

 7.如图,用K、、三类不同的元件连接成一个系统。当正常工作且、至少有一个正常工作时,系统正常工作,已知K、、正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为

 

 A.0.960 B.0.8 C.0.720 D.0.576

 8.已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y满足不等式,则z的取值范围为

 A..[-2,2] B.[-2,3] C.[-3,2] D.[-3,3]

 9.若实数a,b满足且,则称a与b互补,记,那么是a与b互补的

 A.必要而不充分的条件 B.充分而不必要的条件

 C.充要条件 D.即不充分也不必要的条件

 10.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变。假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:,其中M0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M(60)=

 A.5太贝克 B.75In2太贝克

 C.150In2太贝克 D.150太贝克

 二、填空题:本大题共5小题,每小题5分,共25分。请将答案填在答题卡对应题号的位置上,一题两空的题,其中答案按先后次序填写。答错位置,书写不清,模棱俩可均不给分。

 11. 的展开式中含的项的系数为

 12.在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 。(结果用最简分数表示)

 13.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。

试卷类型A

14.如图,直角坐标系所在平面为,直角坐标系(其中与轴重合)所在的平面为,。

(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 ;

(Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。

15. 给个自上而下相连的正方形着黑色或白色。当时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如下图所示:

由此推断,当时,黑色正方形互不相连的着色方案共有 种,至少有两个黑色正方形相连的着色方案共有 种,(结果用数值表示)

三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.

16.(本小题满分10分)

设的内角所对的边分别为,已知

(Ⅰ)求的周长

(Ⅱ)求的值

17. (本小题满分12分)

提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流速度x 的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明;当时,车流速度v是车流密度x的一次函数.

(Ⅰ)当时,求函数的表达式;

(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求最大值(精确到1辆/每小时)

18. (本小题满分12分)

如图,已知正三棱柱的各棱长都是4,是的中点,动点在侧棱上,且不与点重合.

(Ⅰ)当=1时,求证:⊥;

(Ⅱ)设二面角的大小为,求的最小值.

19.(本小题满分13分)

已知数列的前项和为,且满足:, N*,.

(Ⅰ)求数列的通项公式;

(Ⅱ)若存在 N*,使得,,成等差数列,是判断:对于任意的N*,且,,,是否成等差数列,并证明你的结论.

20. (本小题满分14分)

平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.

(Ⅰ)求曲线的方程,并讨论的形状与值得关系;

(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。

21.(本小题满分14分)

(Ⅰ)已知函数,,求函数的最大值;

(Ⅱ)设…,均为正数,证明:

(1)若……,则…;

(2)若…=1,则……。

2022年高考试卷(2022年高考试卷分类使用省份)

2018年湖北高考的数学平均分大概在65分左右。

1、2013至2018年数学平均分。

2013年全国新课标一卷数学平均分46分(教育部考试中心数据),到了2014年就有所上升,2015年已经达到了55分左右。近年来由于全国卷使用省份的不同增加,兼顾更多省,也考虑更多因素,17年的全国卷平均分在60分左右,今年预估的平均分大概在65分左右。

2、湖北2018年高考数学试题的难度。

湖北高考2018年使用全国一卷,根据考完的考生反映,今年湖北高考试卷的考试难度不是很难,很多考生表示今年的全国一卷很简单,但是还是要因人而异,对于那些平时数学就不是很好的考生来说,还是有难度的。

3、2018年湖北高考成绩查询时间。

2018年湖北高考成绩查询时间预计在6月22日-26日左右,在查询成绩的时候如果出现查分网站打不开的状况是很正常的,因为在高考成绩公布的时候查分的人数太多,如果遇到这种情况可以错开高峰时段进行查询高考成绩。

高考成绩查询方法。

1、网上查询。

许多省份都提供了网上查询高考成绩的服务。考生可以登录相关教育部门的官方网站或高考成绩查询平台,按照提示填写相关个人信息(如考生号、身份证号码等),然后查询成绩。查询结果通常会显示各科成绩、总成绩以及排名等信息。

2、短信查询。

某些地区的教育部门也提供通过短信查询高考成绩的服务。考生需要按照指定格式,发送特定的短信内容到指定的查询号码,然后会收到一条短信,其中包含了相应的成绩信息。这种方式通常需要支付一定的查询费用。

3、高中学校查询。

在一些地方,考生可以到自己所在的高中学校查询高考成绩。学校会按照规定的时间提供相应的成绩查询服务,考生可以携带自己的相关证件,到学校的指定地点查询成绩。

以上数据来自高三网官网。

福建省近几年高考卷 数学

今天小编辑给各位分享2022年高考试卷的知识,其中也会对2022年高考试卷分类使用省份分析解答,如果能解决你想了解的问题,关注本站哦。

2022高考全国卷有几套哪些省份使用

一、2022年高考全国共有八套试卷,分别是全国甲卷、全国乙卷、新高考I卷、新高考II卷、北京自主命题卷、天津自主命题卷、浙江自主命题卷、上海自主命题卷。

二、云南、广西、贵州、四川、西藏,共5省市区:全国甲卷

这五个省份的语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。

二、河南、山西、江西、安徽、甘肃、青海、内蒙古、黑龙江、吉林、宁夏、新疆、陕西,共12省市区:全国乙卷。

全国乙卷的语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。

三、广东、福建、江苏、湖南、湖北、河北、山东,共7省:新高考Ⅰ卷

语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。

其中广东、福建、江苏、湖南、湖北、河北6个省是3+1+2模式的高考省份,山东省是综合改革3+3省份。

四、辽宁、重庆、海南,共3省市:新高考Ⅱ卷

语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。其中辽宁、重庆两省市是3+1+2省份,海南是综合改革3+3省份。

五、北京市、上海市、天津市、浙江省,共4省市:自主命题

这四个地区的考生分别使用其自主命题的试卷,即:北京卷、上海卷、天津卷、浙江卷。

以上内容参考闽南网-2022高考全国卷有几套?哪些省份使用全国卷?新高考全国Ⅰ卷、Ⅱ卷使用省份

2022高考试卷难度排名

2022高考试卷难度排名如下:

1、高考难度一颗星:北京、上海、天津。

这些地区的高考难度在全国来说是最低的。首先,这些地区参加高考的人数相对比较少。另外,这三个地区是我们国内教育资源最集中的地区,拥有很多所名牌大学。大学招生对于本地考生都有一定的政策倾斜,这也意味着在这三个地区考上大学相对于其他地区会容易很多。

2、高考难度两颗星:吉林、西藏、宁夏、辽宁、青海。

首先,这五个省份的高考试卷难度是相对比较简单的。此外,这五个省份每年的高考人数每年在全国都是比较少的,尤其是青海和西藏,这两个省份的高考人数至少可以排进我们国内前五。

3、高考难度三颗星:湖北、陕西、黑龙江、内蒙古、海南、新疆。

这七个省份的高考试卷难度是普通难度,高考人数也是处于中等水平。此外,这几个地区每年的高校录取率也是比较中规中矩的,比如说985录取率,这几个地区处于全国平均水平,大约为1.62%左右。

4、高考难度四颗星:甘肃、云南、四川、贵州、湖南、河北、重庆、山西、山东、广西、安徽。

这些省份高考人数比较多,不论本科录取率还是211、988大学录取率都比较低,竞争压力也比较大,这些地区的高考难度都是比较高的。

5、高考难度五颗星:江西、江苏、广东、浙江、河南。

广东省和河南省基本每年的高考人数都是全国最多的。尤其河南省每年都有上百万的考生,而省内却连一所985大学都没有,只有一所211大学,想考名校的难度是非常大的。江西省分数线在逐年升高,而全国各大学在江西省的投放名额却非常少,这也导致了江西省一本录取率是非常低的。

江苏高考2022是全国几卷

一卷。江苏省2022年高考采用的是新高考一卷。

随着高考综合改革的推进,2022年使用考试中心命制的全国统一高考试卷的新高考省份增加到10个,老高考省份减少到17个。2022年全国卷包括新高考I卷、II卷和老高考甲卷、乙卷。

2022年使用新高考一卷的省份有:山东、河北、湖北、湖南、江苏、广东、福建。

江苏采用“新高考”模式:

总分确定为750分,其中,语文、数学、英语依然为每科150分的满分,物理与历史当中任选一科,每门学科满分100分,政治、地理、化学、生物四门科目中选择2门科目,每门满分100分!

这也意味着江苏高考,将正式回归全国卷,在试卷选择上,语文、数学、外语3门统考科目采用全国统一命题试卷;根据教育部规定,选择性考试科目由各省自行组织命题。

2023年高考数学试卷难吗

2010年福建省考试说明样卷

(理科数学)

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第21(1)、(2)、(3)题为选考题,请考生根据要求选答;其它题为必考题.本卷满分150分,考试时间120分钟.

第Ⅰ卷 (选择题 共50分)

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题意要求的.

1.复数 等于

A. B. C.-1+i D.-1-i

2.已知全集U=R,集合 ,则 等于

A. B.

C. D.

3.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是

A. B.

C. D.

4.下列函数 中,满足“对任意 , (0, ),当 < 时,都有 > ”的是

A. = B. =

C. = D.

5.右图是计算函数 的值的程序框图,在①、②、③处应分别填入的是

A. , , B. , ,

C. , , D. , ,

6.设 , 是平面 内的两条不同直线, , 是平面 内的两条相交直线,则 的一个充分而不必要条件是

A. 且 B. 且

C. 且 D. 且

7.已知等比数列 中, ,则其前3项的和 的取值范围是

A. B.

C. D.

8.已知 是实数,则函数 的图象不可能是

9.已知实数 满足 如果目标函数 的最小值为 ,则实数 等于

A.7 B.5 C.4 D.3

10.定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为平面斜坐标系;在平面斜坐标系 中,若 (其中 、 分别是斜坐标系 轴、 轴正方向上的单位向量, , R, 为坐标系原点),则有序数对 称为点 的斜坐标.在平面斜坐标系 中,若 =120°,点 的斜坐标为(1,2),则以点 为圆心,1为半径的圆在斜坐标系 中的方程是

A. B.

C. D.

二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡相应位置.

11.为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点.已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是_______.

12.若 ,则a1+a2+a3+a4+a5=____.

13.由直线 ,x=2,曲线 及x轴所围图形的面积为 .

14.一人上班有甲、乙两条路可供选择,早上定时从家里出发,走甲路线有 的概率会迟到,走乙路线有 的概率会迟到;无论走哪一条路线,只要不迟到,下次就走同一条路线,否则就换另一条路线;假设他第一天走甲路线,则第三天也走甲路线的概率为 .

15.已知椭圆C1的中心在原点、焦点在x轴上,抛物线C2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:

x

0 2

3

y 2 0

据此,可推断椭圆C1的方程为 .

三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.把解答过程填写在答题卡的相应位置.

16.(本小题满分13分)

的三个内角 所对的边分别为 ,向量 =( , ), ,且 ⊥ .

(Ⅰ)求 的大小;

(Ⅱ)现给出下列四个条件:

① ;② ;③ ;④ .

试从中再选择两个条件以确定 ,求出你所确定的 的面积.

(注:只需选择一个方案答题,如果用多种方案答题,则按第一种方案给分)

17.(本小题满分13分)甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84

乙 92 95 80 75 83 80 90 85

(Ⅰ)用茎叶图表示这两组数据;

(Ⅱ)现要从中选派一人参加某数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;

(Ⅲ)若将频率视为概率,对甲同学在今后的3次数学竞赛考试进行预测,记这3次成绩中高于80分的次数为 ,求 的分布列及数学期望E .

18.(本小题满分13分)四棱锥P-ABCD的底面与四个侧面的形状和大小如图所示.

(Ⅰ)写出四棱锥P-ABCD中四对线面垂直关系(不要求证明);

(Ⅱ)在四棱锥P-ABCD中,若 为 的中点,求证: ‖平面PCD;

(Ⅲ)在四棱锥P-ABCD中,设面PAB与面PCD所成的角为 ,求 值.

19.(本小题满分13分) 以F1(0,-1),F2(0,1)为焦点的椭圆C过点P( ,1).

(Ⅰ)求椭圆C的方程; (Ⅱ)略.

20.(本小题满分14分)已知函数 .

(Ⅰ)求函数 的极值;(Ⅱ)略.

21.本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.

(1)(本小题满分7分)选修4-2:矩阵与变换(略).

(2)(本小题满分7分)选修4一4:坐标系与参数方程

在极坐标系中,设圆 上的点到直线 的距离为 ,求 的最大值.

(3)(本小题满分7分) 选修4—5:不等式选讲

已知 的最小值.

样卷参考答案

一、选择题:本题考查基础知识和基本运算,每小题5分,满分50分.

1.D 2.A 3.D 4.A 5.B 6.B 7.D 8.D 9.B 10.A

二、填空题:本题考查基础知识和基本运算,每小题4分,满分20分.

11.9. 12.31. 13.2 . 14. .15. .

三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.

16.解:(I)∵ ⊥ ,∴-cosBcosC+sinBsinC- =0,

即cosBcosC-sinBsinC=- ,∴cos(B+C)=- .∵A+B+C=180°,∴cos(B+C)=-cosA,

∴cosA= ,A=30°.

(Ⅱ)方案一:选择①③,可确定△ABC.∵A=30°,a=1,2c-( +1)b=0.

由余弦定理 ,整理得 =2,b= ,c= .

∴ .

方案二:选择①④,可确定△ABC.∵A=30°,a=1,B=45°,∴C=105°.

又sin105°=sin(60°+45°)=sin60°cos45°+cos60°sin45°= .

由正弦定理得c= .∴ .

(注:若选择②③,可转化为选择①③解决;若选择②④,可转化为选择①④解决,此略.选择①②或选择③④不能确定三角形)

17. 解:(I)作出茎叶图如下:

(Ⅱ)派甲参赛比较合适,理由如下:

甲的成绩较稳定,派甲参赛比较合适.

注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分,如派乙参赛比较合适,理由如下:从统计的角度看,甲获得85以上(含85分)的概率 ,乙获得85分以上(含85分)的概率 . , 派乙参赛比较合适.

(Ⅲ)记“甲同学在一次数学竞赛中成绩高于80分”为事件A, 则 .

随机变量 的可能取值为0,1,2,3,且 服从 ,

所以变量 的分布列为 .

.(或 )

18.解法一:

(Ⅰ)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,

AD⊥平面PAB,BC⊥平面PAB,AB⊥平面PAD.

(Ⅱ)依题意AB,AD,AP两两垂直,分别以直线AB,AD,AP为x,y,z轴,

建立空间直角坐标系,如图.则 , , , .

∵E是PA中点,∴点E的坐标为 ,

, , .

设 是平面PCD的法向量.由 ,即

取 ,得 为平面PCD的一个法向量.

∵ ,∴ ,

∴ ‖平面PCD.又BE 平面PCD,∴BE‖平面PCD.

(Ⅲ)由(Ⅱ),平面PCD的一个法向量为 ,

又∵AD⊥平面PAB,∴平面PAB的一个法向量为 ,

∴ .

19.解: (Ⅰ)设椭圆方程为 (a>b>0),由已知c=1,

又2a= ,所以a= ,b2=a2-c2=1,椭圆C的方程是x2+ =1.

20.解:(Ⅰ) .

当 , ,函数 在 内是增函数,∴函数 没有极值.

当 时,令 ,得 .

当 变化时, 与 变化情况如下表:

+ 0 -

单调递增 极大值 单调递减

∴当 时, 取得极大值 .

综上,当 时, 没有极值;

当 时, 的极大值为 ,没有极小值.

21. (2)解:将极坐标方程 转化为普通方程:

可化为

在 上任取一点A ,则点A到直线的距离为

,它的最大值为4

高中数学考试技巧

2023年高考数学试卷很难。

2023年高考数学全面贯彻党的教育方针,促进学生德智体美劳全面发展;反映新时代基础教育课程理念,落实考试评价改革、高中育人方式改革等相关要求,全面考查数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析的核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥数学科在人才选拔中的重要作用。

2023高考数学的作用:

2023年高考数学全国卷充分发挥基础学科的作用,突出素养和能力考查,甄别思维品质、展现思维过程,给考生搭就了展示的舞台、发挥的空间,致力于服务人才自主培养质量提升和现代化建设人才选拔。

1、重点考查逻辑推理素养,如新课标Ⅰ卷第7题以等差数列为材料考查充要条件的推证,要求考生判别充分性和必要性,然后分别进行证明,解决问题的关键是利用等差数列的概念和特点进行推理论证。

新课标Ⅱ卷第11题,其本质是根据一元二次方程根的性质判定方程系数之间的关系,题中函数经过求导以后,其既有极大值又有极小值的性质可以转化为一元二次方程有两个正根。全国乙卷理科第21题要求考生根据参数的性质进行分类推理讨论,考查了思维的条理性、严谨性。

2、深入考查直观想象素养,如全国甲卷理科第15题要求通过想象与简单计算确定球面与正方体棱的公共点的个数。全国乙卷理科第19题以几何体为依托,考查空间线面关系。新课标Ⅱ卷第9题以多选题的形式考查圆锥的内容,题目全面考查基础,四个选项设问逐次递进,前面的选项为后面的选项提供了条件,各选项分别考查圆锥的不同性质,互相联系,重点突出。

3、扎实考查数学运算素养,要求考生理解运算对象,掌握运算法则,探究运算思路,求得运算结果。如新课标Ⅰ卷第17题以正弦定理、同角三角函数基本关系式、解三角形等数学内容,考查数学运算素养。新课标Ⅱ卷第10题设置了直线与抛物线相交的情境,通过直线方程与抛物线方程的联立考查计算能力

四川高考理科数学试卷难不难,难度系数点评答案解析

一、提前进入“角色”

高考前一个晚上睡足八个小时,早晨吃好清淡早餐,按清单带齐一切用具,提前半小时到达考区,一方面可以消除紧张、稳定情绪、从容进场,另一方面也留有时间提前进入“角色”——让大脑开始简单的数学活动,进入单一的数学情境。如:

1.清点一下用具是否带齐(笔、橡皮、作图工具、、准考证等,用具由省考试院统一发放)。

2.把一些基本数据、常用公式、重要定理在脑子里“过过**”。

3.最后看一眼难记易忘的知识点。

4.互问互答一些不太复杂的问题。

二、精神要放松,情绪要自控

最易导致紧张、焦虑和恐惧心理的是入场后与答卷前的“临战”阶段,此时保持心态平衡的方法有三种:

①转移注意法:避开临考者的目光,把注意力转移到某一次你印象较深的数学模拟考试的评讲课上,或转移到对往日有趣、滑稽事情的回忆中。

②自我安慰法:如“我经过的考试多了,没什么了不起”,“考试,老师监督下的独立作业,无非是换一换环境”等。

③抑制思维法:闭目而坐,气贯丹田,四肢放松,深呼吸,慢吐气,(最好默念几遍:“阿弥陀佛或祖先保佑”呵呵,还真的管用)如此进行到发卷时。

三、迅速摸透“题情”

刚拿到试卷,一般心情比较紧张,不忙匆匆作答,可先从头到尾、正面反面通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作全面调查,一般可在十分钟之内做完三件事:

1.顺利解答那些一眼看得出结论的简单选择或填空题(建议第一题做两遍,直至答案一致为止,一旦解出,情绪立即会稳定)。

2.对不能立即作答的题目,可一面通览,一面粗略分为甲、已两类:甲类指题型比较熟悉、估计上手比较容易的题目,乙类是题型比较陌生、自我感觉比较困难的题目。

3.做到三个心中有数:对全卷一共有几道大小题有数,防止漏做题,对每道题各占几分心中有数,大致区分一下哪些属于代数题,哪些属于三角题,哪些属于综合型的题。

通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。

四、信心要充足,暗示靠自己

答卷中,见到简单题,要细心,不要忘乎所以,谨防“大意失荆州”。面对偏难的题,要耐心,不能急。考试全程都要确定“人家会的我也会,人家不会的我也会”的必胜信念,使自己始终处于最佳竞技状态。

五、三先三后

在通览全卷、并作了简单题的第一遍解答后,情绪基本趋于稳定,大脑趋于亢奋,此后七八十分钟内就是最佳状态的发挥或收获丰硕果实的黄金季节了。实践证明,满分卷是极少数,绝大部分考生都只能拿下部分题目或题目的部分得分。因此,实施“三先三后”及“分段得分”的考试艺术是明智的。

1.先易后难。就是说,先做简单题,再做复杂题;先做甲类题,再做乙类题。当进行第二遍解答时(通览并顺手解答算第一遍),就无需拘泥于从前到后的顺序,应根据自己的实际,跳过啃不动的题目,从易到难。

2.先高(分)后低(分)。这里主要是指在考试的后半段时要特别注重时间效益,如两道题都会做,先做高分题,后做低分题,以使时间不足时少失分;到了最后十分钟,也应对那些拿不下来的题目就高分题“分段得分”,以增加在时间不足前提下的得分。

3.先同后异。就是说,可考虑先做同学科同类型的题目。这样思考比较集中,知识或方法的沟通比较容易,有利于提高单位时间的效益。一般说来,考试解题必须进行“兴奋灶”的转移,思考必须进行代数学科与几何学科的相互换位,必须进行从这一章节到那一章节的跳跃,但“先同后异”可以避免“兴奋灶”过急、过频和过陡的跳跃。

三先三后,要结合实际,要因人而异,谨防“高分题久攻不下,低分题无暇顾及”现象发生。

六、一慢一快

就是说,审题要慢,做题要快。

题目本身是“怎样解这道题”的信息源,所以审题一定要逐字逐句看清楚,力求从语法结构、逻辑关系、数学含义等各方面真正看清题意。解题实践表明,条件预示可知并启发解题手段,结论预告需知并诱导解题方向。凡是题目未明显写出的,一定是隐蔽给予的,只有细致的审题才能从题目本身获得尽可能多的信息,这一步不要怕慢,建议将题目读两遍。

找到解题方法后,书写要简明扼要,快速规范,不要拖泥带水,啰嗦重复,尤忌画蛇添足。一般来说,一个原理或者一个定理公式写一步就可以了,至于不是题目考查的过渡知识,可以直接写出结论。高考允许合理省略非关键步骤。

为了提高书写效率,应尽量使用数学语言、符号,这比文字叙述要节省而严谨。

七、分段得分

对于同一道题目,有的人理解得深,有的人理解得浅,有的人解决得多,有的人解决得少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。

鉴于这一情况,高考中对于难度较大的题目采用“分段得分”的策略实为一种高招儿。其实,考生的“分段得分”是高考“分段评分”的逻辑必然。“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。

1.对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的——会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤——对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。高考阅卷经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。

2.对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。

①缺步解答

如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”,确实是个好主意。

②跳步答题

解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。

由于考试时间的限制,“卡壳处”的攻克来不及了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。

也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。

③退步解答

“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。

④辅助解答

一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。

书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真→学习认真→成绩优良→给分偏高。

有些选择题,“大胆猜测”也是一种辅助解答,实际上猜测也是高考必须考查的一种能力——合情推理能力。

八、以快为上

高考数学试卷共有22个题,考试时间为两个小时,平均每题约为5.5分钟。为了给解答题的中高档题留下较充裕的时间,每道选择题、填空题应在一至二分钟之内解决。若这些题目用时太长,即使做对了也是“潜在丢分”,或“隐含失分”。一般,客观性试题与主观性试题的时间分配为4∶6,即选填题用时控制在50分钟左右。

九、立足中下题目,力争高水平

平时做作业,都是按所有题目来完成的,但高考却不然,只有个别的同学能交满分卷,因为时间和个别题目的难度都不允许多数学生去做完、做对全部题目,所以在答卷中要立足中下题目。学生能拿下这些题目,实际上就是数学科打了个胜仗,有了胜利在握的心理,对攻克高档题会更放得开,所以建议大家不要在选择题第10题,文科填空题的16、17题,理科第14题,解答题的第21、22题的第一问以后的问题上花费过多的时间,这些拉距离的试题就不是一般同学在短时间内能够完成的,将时间放在这些题以外的试题上是明智的选择,因为中下题目通常占全卷的80%以上,是试题的主要构成,是考生得分的主要来源。所以有所舍弃才有所得。

十、立足一次成功,重视复查环节,不争交头卷

答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错。

在确信万无一失后方可交卷,宁可坚持到终考一分钟,也不要做交卷第一人。

最后,在交卷前一定要再次检杳一下姓名与考证号是否写正确。

四川高考理科数学试卷难不难,难度系数点评答案解析

普通高考理科数学(四川卷)依然遵循《考试大纲》及《考试说明(四川卷)》要求,保持了近几年的四川卷命题风格,在题型、题量、难度方面保持了相对稳定,立足现行教材,回归数学本质,重视基础知识、基本技能的考查,强调通性通法,注重能力立意,命题命制立足学科主干知识,将知识、方法、能力的考查融为一体,通过适度联系与综合等方式,在知识交汇处考查学生的数学思维方法和能力,同时试题在稳定中追求创新,有利于考查学生的数学素养与学习潜能,整个试卷布局合理,难度适中,有较好区分度,无偏题、怪题,有利于科学选拨人才,维护社会公平与稳定。

 一.注重基础,加强创新、突出重难点思维方法

 纵观高考试题,突出体现在基础与创新:四川高考试题在延续过去几年命题特点的基础上,加大了创新能力、数学思想方法的考查。在题型、题量和难度上保持了相对稳定,避免大起大落。选择填空试题叙述简练,侧重考查基础,如理科第1,2,3,4,5,7,8题,直接来自教材习题或改编,中等程度学生能快速解答;试题命制贴近生活,如第12题,以生活中的食品问题为背景考查对数,第17题以辩论赛为背景,考查概率统计的应用;解答题较往年更改了题目顺序,依次是数列、概率统计、立体几何、三角、解析几何与函数导数,这个变化可能让大多数同学措手不及。同时适度强化了不同模块之间的联系与综合,如数列大题将数列与不等式的应用结合在一起,加强了综合能力的考查。

知识模块 函数与导数 平面向量与三角函数 数列与不等式 立体几何 解析几何 计数原理与概率统计 总计 2013 24 27 17 17 18 17 120 2014 29 27 17 17 23 12 125 2015 29 27 12 17 23 17 125

 通过上表可以看出,四川高考数学试题非常注重对学科主干知识的重点考查。

 二.知识素材、情境都有创新,注重探究

 同时部分试题在素材选择、情景设置和设问方式上相比往年有所创新,考查学生的探究意识,应用意识和创新意识,如第10、20等题需要考生根据问题设计的情景,从特殊到一般,从形象到抽象进行不同侧面的探究,第21题也考查学生的应用意识和创新意识,对考生综合与灵活运用所学数学知识、思想方法,进行独立思考分析,创造性的解决问题有较高且合理的要求。

 第20题解析几何大题总体来说命题风格与往年差距较大,此题需要学生有探究猜想的能力,先通过特殊直线将点找出来,再去证明。并且更注重了代数与几何综合的考查,如果能发现此比例关系是角平分线定理,那么求解起来会相当轻松。这种解题思路的变化可能对很多考生来说难以适应。

 第21题展现了数学学科的抽象性和科学性,和最后一题类似,考查2阶导数和分类讨论,解答时需要考生借助图象直观发现解题思路和结论,用严谨的逻辑推理进行证明,整个解答过程经历“画图——观察——探究——发现——证明”的过程,这些试题立意新颖,背景深刻,情境生动,设问巧妙,能很好的考查学生理性思维的广度与深度,考查学生的数学学习潜能。

 总之,四川省高考数学试题充分考虑四川考生特点,紧扣考试大纲,立足教材,在考查基础知识的同时,重视考查能力,追求创新意识,从来看,尤其是注重学习数学过程中的探究。试卷布局合理,难度较更难,有一定区分度,称得上是一份质量上乘的试卷,对促进课程改革也有良好的导向作用。

 最后,学而思高考研究中心祝愿高考学子能够取得优异的成绩,走进理想的大学。同时,对于决战高考学子来说,暑假开始准备一轮复习,祝愿新高三学子能够经历高三一年风雨,在这个暑假开始为高考打下坚实的基础,在高考中取得理想的成绩。

 赵武俊:学而思高考研究中心数学研究员。高考数学143分,以665分考入 北京大学 ,学而思自主招生班主带老师。上课激情风趣、条理清晰,擅长用朴素的语言阐释高中数学。

 陈渝:学而思高考研究中心数学研究员,高中数学联赛一等奖,考入 北京大学 数学系。

文章标签: # 高考 # 数学 # 题目