您现在的位置是: 首页 > 教育改革 教育改革
江苏高考数学考点_江苏高考数学考点等级
tamoadmin 2024-06-10 人已围观
简介1.数学高考都有哪些是考点?2.高考的数学考点有哪些?3.江苏高考数学概念问题4.江苏数学高考考不考定积分和微积分?主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:1.函数函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部
1.数学高考都有哪些是考点?
2.高考的数学考点有哪些?
3.江苏高考数学概念问题
4.江苏数学高考考不考定积分和微积分?
主干内容包括:函数、不等式、三角、数列、解析几何、向量等内容。现分块阐述如下:
1.函数
函数是贯穿中学数学的一条主线,近几年对函数的考察既全面又深入,保持了较高的内容比例,并达到了一定深度。题型分布总体趋势是四道小题一道大题,题量稳中有变,但分值基本在35分左右。选填题覆盖了函数的大部分内容,如函数的三要素,函数的四性(奇偶性、单调性、周期性、对称性)与函数图像、常见的初等函数,反函数等。小题突出考察基础知识,大题注重考察函数的思想方法和综合应用。
2.三角函数
三角部分是高中数学的传统内容,它是中学数学重要的基础知识,因而具有基础性的地位,同时它也是解决数学本身与其它学科的重要工具,因此具有工具性。高考大部分以中低档题的形式出现,至少考一大一小两题,分值16分左右,其中三角恒等变形、求值、三角函数的图象与性质,解三角形是支撑三角函数的知识体系的主干知识,这无疑是高考命题的重点。
3.立体几何
承载着空间想象能力,逻辑推理能力与运算能力考察的立体几何试题,在历年的高考中被定义于中低档题,多是一道解答题,一道选填题;解答一般与棱柱,棱锥有关,主要考察线线与线面关系,其解法一般有两种以上,并且一般都能用空间向量方法来求解。
4.数列与极限
数列与极限是高中数学重要内容之一,也是进一步学习高中数学的基础,每年高考占15%。高考以一大一小两题形式出现,小题主要考察基础知识的掌握,解答题一般为中等以上难度的压轴题。由于这部分知识处于交汇点的地位,比如函数、不等式,向量、解几等都与它们有密切的联系,因此大题目具有较强的综合性与灵活性和思维的深刻性。
5.解析几何
直线与圆的方程,圆锥曲线的定义、标准方程、几何性质是支撑解析几何的基础,也是高考命题的重点,以下三个小题一道大题的形式出现约占30分。客观题主要考察直线方程,斜率、两直线位置关系,夹角公式、点到直线距离,圆锥曲线的标准方程,几何性质等基础知识。解答题为难度较大的综合压轴题。解析几何融合了代数,三角几何等知识是考察学生综合能力的绝好素材。
数学高考都有哪些是考点?
2023江苏高考数学试题总体来说难度有所增加。2023年江苏数学高考试题在严格把控难度比例的同时,又设计了分明的梯度,为不同水平的考生提供了发挥空间。
江苏高考数学是指江苏省普通高考中的数学科目。根据江苏省教育考试院的规定,江苏高考数学考试采用单独命题的方式,分为第一卷和第二卷。
第一卷为选择题,共30个小题,每题5分,考察数学的基本概念、公式和运算技能,题型包括填空题、选择题、计算题等。
第二卷为简答题和证明题,共9道大题,分值不等,考察数学的应用能力、推理能力和证明能力,题型包括解答题、证明题、运算题等。
江苏高考数学的考试内容主要包括数与式、函数、导数与微分、不等式、数列等知识点,涉及到初中和高中数学的基础和拓展内容。除了数学知识点的掌握,江苏高考数学还重视对数学思想和方法的理解和应用。
在备考江苏高考数学时,应该注重理论知识的掌握和实际应用能力的提高,多做练习题和真题,熟悉考试形式和出题思路,同时也要注意复习思维导图和考点归纳总结,以便于梳理知识点和解题方法,最终取得好成绩。
高考的数学考点有哪些?
一、集合、简易逻辑(14课时,8个) 1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件. 二、函数(30课时,12个) 1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数; 10.对数的运算性质; 11.对数函数. 12.函数的应用举例. 三、数列(12课时,5个) 1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式. 四、三角函数(46课时17个) 1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4,单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式’ 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质; 10.周期函数; 11.函数的奇偶性; 12.函数 的图象; 13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例. 五、平面向量(12课时,8个) 1.向量 2.向量的加法与减法 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移. 六、不等式(22课时,5个) 1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式. 七、直线和圆的方程(22课时,12个) 1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念; 10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程. 八、圆锥曲线(18课时,7个) 1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质. 九、(B)直线、平面、简单何体(36课时,28个) 1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线; 4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质; 6.三垂线定理及其逆定理; 7.两个平面的位置关系; 8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示; 10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角; 13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离; 22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体; 25.棱柱; 26.棱锥; 27.正多面体; 28.球. 十、排列、组合、二项式定理(18课时,8个) 1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式’ 4.组合; 5.组合数公式; 6.组合数的两个性质; 7.二项式定理; 8.二项展开式的性质. 十一、概率(12课时,5个) 1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率; 4.相互独立事件同时发生的概率; 5.独立重复试验. 选修Ⅱ(24个) 十二、概率与统计(14课时,6个) 1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法; 4.总体分布的估计; 5.正态分布; 6.线性回归. 十三、极限(12课时,6个) 1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限; 4.函数的极限; 5.极限的四则运算; 6.函数的连续性. 十四、导数(18课时,8个) 1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式; 7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值. 十五、复数(4课时,4个) 1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法; 4.数系的扩充. 追问: 拜托……我们是新课改的,选修多了去了…… 还有我说的那个 不等式 是怎么回事? 回答: 至于你说的 不等式 ,高考肯定会考,但很少直接出题考你,而是通过一些题间接的考,特别是一些大体,几个步骤间接对不等式的性质考察,往往,这是解题关键 追问: 那你说比如什么 柯西不等式 之类的放到大题里面不就太扯了…… 回答: 新课程教材新增内容考点共14 个,分别是: 1. 幂函数 2. 函数零点 与 二分法 3. 三视图 4.算法程序框图与基本算法语句 5. 茎叶图 6.随机数与 几何概型 7.全称量词与存在 量词 8.积分(理科) 9.合情推理与演绎推理 10. 条件概率 (理科) 补充: 并不是很扯,这是可能的,比如在大体往往有一个小问是证明题,这个证明题可以出为用 柯西不等式 证明,但往往只是一个有限个数的式子。 我经历过高三和高考,做过很多题, 不等式 往往重在不等式的证明,而证明方法和思维是很重要的,常用的要记熟( 放缩法 ……)
江苏高考数学概念问题
高考的数学考点有:
1、数列&解三角形
数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来,2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然考查解三角形。
数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。
2、立体几何
高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。
3、概率
高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。
4、解析几何
高考在第20题的位置考查一道解析几何题。主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
5、导数
高考在第21题的位置考查一道导数题。主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。
江苏数学高考考不考定积分和微积分?
是的,很容易证明,设有极值点(x0,f(x0)),左边一点(x1,f(x1)),右边一点(x2,f(x2)).
因为是极值点,所以有f(x0)>f(x2),f(x0)>f(x1).
证明:反正法,假设两边单调性相同,不妨设为单调递增,已知x2>x0>x1,更具单调递增定义有f(x2)>f(x0)>f(x1),与已知f(x0)>f(x2)矛盾。反之亦然。故极值点两边单调性必需相反。
以上证明并不是很严格,但是大体思路就是这样。希望对你有帮助。
不考。
从江苏往年考察内容来看,知识的考查较为全面,复数,概率,统计,算法语言等都有涉及;解答题突出对基本公式定理的考查,解决函数、数列、三角函数、立体几何、解析几何及实际问题等重点知识;二卷中也是常规的空间向量,和排列组合归纳证明等常考问题。?
根据普通高等学校招生全国统一考试大纲,结合江苏省实际情况,从2019年起,江苏省高考语文、数学、物理三个科目的考试内容将作相应的调整。
1、语文论述类文本和实用类文本均作为必考内容。
2、数学删去“几何证明选讲”,其余3个选考模块不变,由“4选2”改为“3选2”。
3、物理原选考“3-5”列为必考,其余2个选考模块不变,由“3选2”改为“2选1”。
由考试内容调整引起的试卷结构调整,官方将会提前告知。
上一篇:高考理综考点归纳_高考理综考纲