您现在的位置是: 首页 > 分数线 分数线
广东高考数学考什么_广东高考数学公式
tamoadmin 2024-05-20 人已围观
简介1.出卷人是如何把高考中一道数学/物理压轴题设计出来的?1. (05年广东卷)已知数列 满足 , , ….若 ,则(B)(A) (B)3(C)4(D)52. (05年福建卷)3.已知等差数列 中, 的值是 ( A ) A.15 B.30 C.31 D.643. (05年湖南卷)已知数列 满足 ,则 = (B ) A.0 B. C. D. 4. (05年湖南卷)已知数列{log2(an-
1.出卷人是如何把高考中一道数学/物理压轴题设计出来的?
1. (05年广东卷)已知数列 满足 , , ….若 ,则(B)
(A) (B)3(C)4(D)5
2. (05年福建卷)3.已知等差数列 中, 的值是 ( A )
A.15 B.30 C.31 D.64
3. (05年湖南卷)已知数列 满足 ,则 = (B )
A.0 B. C. D.
4. (05年湖南卷)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
= (C)
A.2 B. C.1 D.
5. (05年湖南卷)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2005(x)=(C)
A.sinx B.-sinx C.cosx D.-cosx
6. (05年江苏卷)在各项都为正数的等比数列{an}中,首项a1=3 ,前三项和为21,则a3+ a4+ a5=(C )
( A ) 33 ( B ) 72 ( C ) 84 ( D )189
7. (05年全国卷II) 如果数列 是等差数列,则(B )
(A) (B) (C) (D)
8. (05年全国卷II) 11如果 为各项都大于零的等差数列,公差 ,则(B)
(A) (B) (C) (D)
9. (05年山东卷) 是首项 =1,公差为 =3的等差数列,如果 =2005,则序号 等于(C )
(A)667 (B)668 (C)669 (D)670
10. (05年上海)16.用n个不同的实数a1,a2,┄an可得n!个不同的排列,每个排列为一行写成 1 2 3
一个n!行的数阵.对第i行ai1,ai2,┄ain,记bi=- ai1+2ai2-3 ai3+┄+(-1)nnain, 1 3 2
i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3
是12,所以,b1+b2+┄+b6=-12+2 12-3 12=-24.那么,在用1,2,3,4,5形成 2 3 1
的数阵中, b1+b2+┄+b120等于 3 1 2
3 2 1
[答]( C )
(A)-3600 (B) 1800 (C)-1080 (D)-720
11. (05年浙江卷) =( C )
(A) 2 (B) 4 (C) (D)0
12. (05年重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。已知最底层正方体的棱长为2,且改塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是( C)
(A) 4;
(B) 5;
(C) 6;
(D) 7。
13、(04年浙江文理(3)) 已知等差数列 的公差为2,若 成等比数列, 则 =
(A) –4 (B) –6 (C) –8 (D) –10
14、(04年全国卷四文理6).等差数列 中, ,则此数列前20项和等于
A.160 B.180 C.200 D.220
15、(04年全国三文(4))等比数列 中 ,则 的前4项和为
A. 81 B. 120 C. 125 D. 192
16、(04年天津卷理8.) 已知数列 ,那么“对任意的 ,点 都在直线 上”是“ 为等差数列”的
A. 必要而不充分条件B. 充分而不必要条件C. 充要条件D. 既不充分也不必要条件
17、(04年全国卷三理⑶)设数列 是等差数列, ,Sn是数列 的前n项和,则( )
A.S4<S5 B.S4=S5 C.S6<S5 D.S6=S5
18.(2003天津文)5.等差数列 ( C )
A.48 B.49 C.50 D.51
19.(2001天津)若Sn是数列{an}的前n项和,且 则 是 ( B )
(A)等比数列,但不是等差数列 (B)等差数列,但不是等比数列
(C)等差数列,而且也是等比数列 (D)既非等比数列又非等差数列
20、(04年湖北卷理8文9).已知数列{ }的前n项和 其中a、b是非零常数,则存在数列{ }、{ }使得( )
A. 为等差数列,{ }为等比数列
B. 和{ }都为等差数列
C. 为等差数列,{ }都为等比数列
D. 和{ }都为等比数列
21、(04年重庆卷理9). 若数列 是等差数列,首项 ,则使前n项和 成立的最大自然数n是:( )
A 4005 B 4006 C 4007 D 4008
二、填空题
1、(05年广东卷)
设平面内有n条直线 ,其中有且仅有两条直线互相平行,任意三角形不过同一点.若用 表示这n条直线交点的个数,则 _____5________;当n>4时, =__ ___________.
2、. (05年北京卷)已知n次多项式 ,
如果在一种算法中,计算 (k=2,3,4,…,n)的值需要k-1次乘法,计算 的值共需要9次运算(6次乘法,3次加法),那么计算 的值共需要 n(n+3) 次运算.
下面给出一种减少运算次数的算法: (k=0, 1,2,…,n-1).利用该算法,计算 的值共需要6次运算,计算 的
值共需要 2n 次运算.
3. (05年湖北卷)设等比数列 的公比为q,前n项和为S?n,若Sn+1,S?n,Sn+2成等差数列,则q的值为 -2 .
4. (05年全国卷II) 在 和 之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为_______216 __.
5. (05年山东卷)
6. (05年上海)12、用 个不同的实数 可得到 个不同的排列,每个排列为一行写成一个 行的数阵。对第 行 ,记 , 。例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以, ,那么,在用1,2,3,4,5形成的数阵中, =_-1080_________。
7、计算: =_3 _________。
8. (05年天津卷)设 ,则
9、 (05年天津卷)在数列{an}中, a1=1, a2=2,且 ,
则 =_2600_ ___.
10. (05年重庆卷) = -3 .
11、(04年上海卷理12) 若干个能唯一确定一个数列的量称为该数列的“基本量”.设{an}是公比为q的无穷等比数列,下列{an}的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号)①S1与S2; ②a2与S3; ③a1与an; ④q与an.其中n为大于1的整数, Sn为{an}的前n项和.(①、④)
12(04年江苏卷15).设数列{an}的前n项和为Sn,Sn= (对于所有n≥1),且a4=54,则a1的数值是__2
13(04年北京文理(14))定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列 是等和数列,且 ,公和为5,那么 的值为___,且(文:这个数列的前21项和 的值为_____)(理:这个数列的前n项和 的计算公式为__( 3 ;(文:52)理:当n为偶数时, ;当n为奇数时, )
三、解答题
1.(05年北京卷)
设数列{an}的首项a1=a≠ ,且 ,
记 ,n==l,2,3,…?.
(I)求a2,a3;
(II)判断数列{bn}是否为等比数列,并证明你的结论;
(III)求 .
解:(I)a2=a1+ =a+ ,a3= a2= a+ ;
(II)∵ a4=a3+ = a+ , 所以a5= a4= a+ ,
所以b1=a1- =a- , b2=a3- = (a- ), b3=a5- = (a- ),
猜想:{bn}是公比为 的等比数列?
证明如下:
因为bn+1=a2n+1- = a2n- = (a2n-1- )= bn, (n∈N*)
所以{bn}是首项为a- , 公比为 的等比数列?
(III) .
2.(05年北京卷)数列{an}的前n项和为Sn,且a1=1, ,n=1,2,3,……,求
(I)a2,a3,a4的值及数列{an}的通项公式;
(II) 的值.
解:(I)由a1=1, ,n=1,2,3,……,得
, , ,
由 (n≥2),得 (n≥2),
又a2= ,所以an= (n≥2),
∴ 数列{an}的通项公式为 ;
(II)由(I)可知 是首项为 ,公比为 项数为n的等比数列,∴ =
3.(05年福建卷)
已知{ }是公比为q的等比数列,且 成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{ }是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
解:(Ⅰ)由题设
(Ⅱ)若
当 故
若
当
故对于
4. (05年福建卷)已知数列{an}满足a1=a, an+1=1+ 我们知道当a取不同的值时,得到不同的数列,如当a=1时,得到无穷数列:
(Ⅰ)求当a为何值时a4=0;
(Ⅱ)设数列{bn?}满足b1=-1, bn+1= ,求证a取数列{bn}中的任一个数,都可以得到一个有穷数列{an};
(Ⅲ)若 ,求a的取值范围.
(I)解法一:
故a取数列{bn}中的任一个数,都可以得到一个有穷数列{an}
5. (05年湖北卷)设数列 的前n项和为Sn=2n2, 为等比数列,且
(Ⅰ)求数列 和 的通项公式;
(Ⅱ)设 ,求数列 的前n项和Tn.
解:(1):当
故{an}的通项公式为 的等差数列.
设{bn}的通项公式为
故
(II)
两式相减得
6. (05年湖北卷)已知不等式 为大于2的整数, 表示不超过 的最大整数. 设数列 的各项为正,且满足
(Ⅰ)证明
(Ⅱ)猜测数列 是否有极限?如果有,写出极限的值(不必证明);
(Ⅲ)试确定一个正整数N,使得当 时,对任意b>0,都有
解:(Ⅰ)证法1:∵当
即
于是有
所有不等式两边相加可得
由已知不等式知,当n≥3时有,
∵
证法2:设 ,首先利用数学归纳法证不等式
(i)当n=3时, 由
知不等式成立.
(ii)假设当n=k(k≥3)时,不等式成立,即
则
即当n=k+1时,不等式也成立.
由(i)、(ii)知,
又由已知不等式得
(Ⅱ)有极限,且
(Ⅲ)∵
则有
故取N=1024,可使当n>N时,都有
7. (05年湖南卷)已知数列 为等差数列,且
(Ⅰ)求数列 的通项公式;
(Ⅱ)证明
(I)解:设等差数列 的公差为d.
由 即d=1.
所以 即
(II)证明因为 ,
所以
8. (05年湖南卷)自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响. 用xn表示某鱼群在第n年年初的总量,n∈N*,且x1>0.不考虑其它因素,设在第n年内鱼群的繁殖量及捕捞量都与xn成正比,死亡量与xn2成正比,这些比例系数依次为正常数a,b,c.
(Ⅰ)求xn+1与xn的关系式;
(Ⅱ)猜测:当且仅当x1,a,b,c满足什么条件时,每年年初鱼群的总量保持不变?(不
要求证明)
(Ⅱ)设a=2,b=1,为保证对任意x1∈(0,2),都有xn>0,n∈N*,则捕捞强度b的
最大允许值是多少?证明你的结论.
解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为
(II)若每年年初鱼群总量保持不变,则xn恒等于x1, n∈N*,从而由(*)式得
因为x1>0,所以a>b.
猜测:当且仅当a>b,且 时,每年年初鱼群的总量保持不变.
(Ⅲ)若b的值使得xn>0,n∈N*
由xn+1=xn(3-b-xn), n∈N*, 知
0<xn<3-b, n∈N*, 特别地,有0<x1<3-b. 即0<b<3-x1.
而x1∈(0, 2),所以
由此猜测b的最大允许值是1.
下证 当x1∈(0, 2) ,b=1时,都有xn∈(0, 2), n∈N*
①当n=1时,结论显然成立.
②假设当n=k时结论成立,即xk∈(0, 2),
则当n=k+1时,xk+1=xk(2-xk?)>0.
又因为xk+1=xk(2-xk)=-(xk-1)2+1≤1<2,
所以xk+1∈(0, 2),故当n=k+1时结论也成立.
由①、②可知,对于任意的n∈N*,都有xn∈(0,2).
综上所述,为保证对任意x1∈(0, 2), 都有xn>0, n∈N*,则捕捞强度b的最大允许值是1.
9. (05年江苏卷)设数列{an}的前项和为 ,已知a1=1, a2=6, a3=11,且 , 其中A,B为常数.
(Ⅰ)求A与B的值;
(Ⅱ)证明数列{an}为等差数列;
(Ⅲ)证明不等式 .
解:(Ⅰ)由 , , ,得 , , .
把 分别代入 ,得
解得, , .
(Ⅱ)由(Ⅰ)知, ,即
, ①
又 . ②
②-①得, ,
即 . ③
又 . ④
④-③得, ,
∴ ,
∴ ,又 ,
因此,数列 是首项为1,公差为5的等差数列.
(Ⅲ)由(Ⅱ)知, .考虑
.
.
∴ .
即 ,∴ .
因此, .
10. (05年辽宁卷)已知函数 设数列 }满足 ,数列 }满足
(Ⅰ)用数学归纳法证明 ;
(Ⅱ)证明
解:(Ⅰ)证明:当 因为a1=1,
所以 ………………2分
下面用数学归纳法证明不等式
(1)当n=1时,b1= ,不等式成立,
(2)假设当n=k时,不等式成立,即
那么 ………………6分
所以,当n=k+1时,不等也成立。
根据(1)和(2),可知不等式对任意n∈N*都成立。 …………8分
(Ⅱ)证明:由(Ⅰ)知,
所以
…………10分
故对任意 ………………(12分)
11. (05年全国卷Ⅰ) 设正项等比数列 的首项 ,前n项和为 ,且 。
(Ⅰ)求 的通项;
(Ⅱ)求 的前n项和 。
解:(Ⅰ)由 得
即
可得
因为 ,所以 解得 ,因而
(Ⅱ)因为 是首项 、公比 的等比数列,故
则数列 的前n项和
前两式相减,得
即
12. (05年全国卷Ⅰ)
设等比数列 的公比为 ,前n项和 。
(Ⅰ)求 的取值范围;
(Ⅱ)设 ,记 的前n项和为 ,试比较 与 的大小。
解:(Ⅰ)因为 是等比数列,
当
上式等价于不等式组: ①
或 ②
解①式得q>1;解②,由于n可为奇数、可为偶数,得-1<q<1.
综上,q的取值范围是
(Ⅱ)由 得
于是
又∵ >0且-1< <0或 >0
当 或 时 即
当 且 ≠0时, 即
当 或 =2时, 即
13. (05年全国卷II) 已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .
(Ⅰ) 证明 为等比数列;
(Ⅱ) 如果数列 前3项的和等于 ,求数列 的首项 和公差 .
(I)证明:∵ 、 、 成等差数列
∴2 = + ,即
又设等差数列 的公差为 ,则( - ) = ( -3 )
这样 ,从而 ( - )=0
∵ ≠0
∴ = ≠0
∴
∴ 是首项为 = ,公比为 的等比数列。
(II)解。∵
∴ =3
∴ = =3
14.( 05年全国卷II)
已知 是各项为不同的正数的等差数列, 、 、 成等差数列.又 , .
(Ⅰ) 证明 为等比数列;
(Ⅱ) 如果无穷等比数列 各项的和 ,求数列 的首项 和公差 .
(注:无穷数列各项的和即当 时数列前 项和的极限)
解:(Ⅰ)设数列{an}的公差为d,依题意,由 得
即 ,得 因
当 =0时,{an}为正的常数列 就有
当 = 时, ,就有
于是数列{ }是公比为1或 的等比数列
(Ⅱ)如果无穷等比数列 的公比 =1,则当 →∞时其前 项和的极限不存在。
因而 = ≠0,这时公比 = ,
这样 的前 项和为
则S=
由 ,得公差 =3,首项 = =3
15. (05年全国卷III)
在等差数列 中,公差 的等差中项.
已知数列 成等比数列,求数列 的通项
解:由题意得: ……………1分
即 …………3分
又 …………4分
又 成等比数列,
∴该数列的公比为 ,………6分
所以 ………8分
又 ……………………………………10分
所以数列 的通项为 ……………………………12分
16. (05年山东卷)
已知数列 的首项 前 项和为 ,且
(I)证明数列 是等比数列;
(II)令 ,求函数 在点 处的导数 并比较 与 的大小.
解:由已知 可得 两式相减得
即 从而 当 时 所以 又 所以 从而
故总有 , 又 从而 即数列 是等比数列;
(II)由(I)知
因为 所以
从而 =
= - =
由上 - =
=12 ①
当 时,①式=0所以 ;
当 时,①式=-12 所以
当 时, 又
所以 即① 从而
17.(05年上海)本题共有2个小题,第1小题满分6分, 第2小题满分8分.
假设某市2004年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,
(1)该市历年所建中低价房的累计面积(以2004年为累计的第一年)将首次不少于4750万平方米?
(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?
[解](1)设中低价房面积形成数列{an},由题意可知{an}是等差数列,
其中a1=250,d=50,则Sn=250n+ =25n2+225n,
令25n2+225n≥4750,即n2+9n-190≥0,而n是正整数, ∴n≥10.
到2013年底,该市历年所建中低价房的累计面积将首次不少于4750万平方米.
(2)设新建住房面积形成数列{bn},由题意可知{bn}是等比数列,
其中b1=400,q=1.08,则bn=400?(1.08)n-1?0.85.
由题意可知an>0.85 bn,有250+(n-1)?50>400?(1.08)n-1?0.85.
由计箅器解得满足上述不等式的最小正整数n=6.
到2009年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.
18. (05年天津卷)
已知 .
(Ⅰ)当 时,求数列 的前n项和 ;
(Ⅱ)求 .
(18)解:(Ⅰ)当 时, .这时数列 的前 项和
. ①
①式两边同乘以 ,得 ②
①式减去②式,得
若 ,
,
若 ,
(Ⅱ)由(Ⅰ),当 时, ,则 .
当 时,
此时, .
若 , .
若 , .
19. (05年天津卷)若公比为c的等比数列{ }的首项 =1且满足: ( =3,4,…)。
(I)求c的值。
(II)求数列{ }的前 项和 。
20. (05年浙江卷)已知实数a,b,c成等差数列,a+1,了+1,c+4成等比数列,求a,b,c.
解:由题意,得 由(1)(2)两式,解得
将 代入(3),整理得
解得 或
故 , 或
经验算,上述两组数符合题意。
21(05年浙江卷)设点 ( ,0), 和抛物线 :y=x2+an x+bn(n∈N*),其中an=-2-4n- , 由以下方法得到:
x1=1,点P2(x2,2)在抛物线C1:y=x2+a1x+b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点 在抛物线 :y=x2+an x+bn上,点 ( ,0)到 的距离是 到 上点的最短距离.
(Ⅰ)求x2及C1的方程.
(Ⅱ)证明{ }是等差数列.
解:(I)由题意,得 。
设点 是 上任意一点,则
令 则
由题意,得 即
又 在 上,
解得
故 方程为
(II)设点 是 上任意一点,则
令 ,则 .
由题意得g ,即
又
即 (*)
下面用数学归纳法证明
①当n=1时, 等式成立。
②假设当n=k时,等式成立,即
则当 时,由(*)知
又
即当 时,等式成立。
由①②知,等式对 成立。
是等差数列。
22. (05年重庆卷)数列{an}满足a1?1且8an?1?16an?1?2an?5?0 (n?1)。记 (n?1)。
(1) 求b1、b2、b3、b4的值;
(2) 求数列{bn}的通项公式及数列{anbn}的前n项和Sn。
解法一:
(I)
(II)因 ,
故猜想
因 ,(否则将 代入递推公式会导致矛盾)。
∵
故 的等比数列.
,
解法二:
(Ⅰ)由
整理得
(Ⅱ)由
所以
故
由 得
故
解法三:
(Ⅰ)同解法一
(Ⅱ)
从而
故
23. (05年重庆卷)数列{an}满足 .
(Ⅰ)用数学归纳法证明: ;
(Ⅱ)已知不等式 ,其中无理数e=2.71828….
(Ⅰ)证明:(1)当n=2时, ,不等式成立.
(2)假设当 时不等式成立,即
那么 . 这就是说,当 时不等式成立.
根据(1)、(2)可知: 成立.
(Ⅱ)证法一:
由递推公式及(Ⅰ)的结论有
两边取对数并利用已知不等式得
故
上式从1到 求和可得
即
(Ⅱ)证法二:
由数学归纳法易证 成立,故
令
取对数并利用已知不等式得
上式从2到n求和得
因
故 成立
24. (05年江西卷)已知数列{an}的前n项和Sn满足Sn-Sn-2=3 求数列{an}的通项公式.
解:方法一:先考虑偶数项有:
………
同理考虑奇数项有:
………
综合可得
方法二:因为
两边同乘以 ,可得:
令
所以
………
又
∴
∴
25. (05年江西卷)
已知数列
(1)证明
(2)求数列 的通项公式an.
解:(1)方法一 用数学归纳法证明:
1°当n=1时,
∴ ,命题正确.
2°假设n=k时有
则
而
又
∴ 时命题正确.
由1°、2°知,对一切n∈N时有
方法二:用数学归纳法证明:
1°当n=1时, ∴ ;
2°假设n=k时有 成立,
令 , 在[0,2]上单调递增,所以由假设
有: 即
也即当n=k+1时 成立,所以对一切
(2)下面来求数列的通项: 所以
,
又bn=-1,所以
26、(04年全国卷四文18).已知数列{ }为等比数列, (Ⅰ)求数列{ }的通项公式;
(Ⅱ)设 是数列{ }的前 项和,证明
解:(I)设等比数列{an}的公比为q,则a2=a1q, a5=a1q4. 依题意,得方程组a1q=6, a1q4=162.解此方程组,得a1=2, q=3.故数列{an}的通项公式为an=2?3n-1
(II)
27、(04年全国三文⒆)设公差不为零的等差数列{an},Sn是数列{an}的前n项和,且 , ,求数列{an}的通项公式.
解:设数列{an}的公差为d(d≠0),首项为a1,由已知得: .解之得: , 或 (舍)
28(04年全国卷三理(22))已知数列{an}的前n项和Sn满足:Sn=2an +(-1)n,n≥1.⑴写出求数列{an}的前3项a1,a2,a3;
⑵求数列{an}的通项公式;⑶证明:对任意的整数m>4,有
解:⑴当n=1时,有:S1=a1=2a1+(-1) a1=1;当n=2时,有:S2=a1+a2=2a2+(-1)2 a2=0;
当n=3时,有:S3=a1+a2+a3=2a3+(-1)3 a3=2;综上可知a1=1,a2=0,a3=2;
⑵由已知得: ,化简得:
上式可化为: ,故数列{ }是以 为首项, 公比为2的等比数列.故 ∴
数列{ }的通项公式为:
⑶由已知得:
. 故 ,( m>4)
29、(04年天津卷文20. )设 是一个公差为 的等差数列,它的前10项和 且 , , 成等比数列。(1)证明 ;(2)求公差 的值和数列 的通项公式
证明:因 , , 成等比数列,故 ,而 是等差数列,有 ,
于是 ,即 ,化简得
(2)解:由条件 和 ,得到 ,由(1), ,代入上式得 ,故 , ,
30(04年浙江卷文(17))、已知数列 的前n项和为 (Ⅰ)求 ;(Ⅱ)求证数列 是等比数列
解: (Ⅰ)由 ,得 ,∴ ,又 ,即 ,得 .(Ⅱ)当n>1时, 得 所以 是首项 ,公比为 的等比数列
31(04年广东卷17). 已知 成公比为2的等比数列( 也成等比数列. 求 的值
解:∵α,β,γ成公比为2的等比数列,∴β=2α,γ=4α,∵sinα,sinβ,sinγ成等比数列
当cosα=1时,sinα=0,与等比数列的首项不为零,故cosα=1应舍去,
32(04年湖南文20). 已知数列{an}是首项为a且公比q不等于1的等比数列,Sn是其前n项的和,a1,2a7,3a4 成等差数列.(I)证明 12S3,S6,S12-S6成等比数列;(II)求和Tn=a1+2a4+3a7+…+na3n
(Ⅰ)证明 由 成等差数列, 得 ,即 变形得 所以 (舍去).由
得
所以12S3,S6,S12-S6成等比数列
(Ⅱ)解:
即 ①
①× 得:
所以
33、(04年江苏卷20).设无穷等差数列{an}的前n项和为Sn.(Ⅰ)若首项 32 ,公差 ,求满足 的正整数k;(Ⅱ)求所有的无穷等差数列{an},使得对于一切正整数k都有 成立
解:(1) ;(2) 或 或
34(04年全国卷一理15).已知数列{an},满足a1=1,an=a1+2a2+3a3+…+(n-1)an-1(n≥2),则{an}的通项
( 答案 )
35(04年全国卷一理22).已知数列 ,且a2k=a2k-1+(-1)K, a2k+1=a2k+3k, 其中k=1,2,3,…….
(I)求a3, a5;(II)求{ an}的通项公式
解:(I)a2=a1+(-1)1=0,a3=a2+31=3. a4=a3+(-1)2=4, a5=a4+32=13, 所以,a3=3,a5=13.
(II) a2k+1=a2k+3k = a2k-1+(-1)k+3k, 所以a2k+1-a2k-1=3k+(-1)k, 同理a2k-1-a2k-3=3k-1+(-1)k-1,
……a3-a1=3+(-1).
所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],
由此得a2k+1-a1= (3k-1)+ [(-1)k-1],于是a2k+1=
a2k= a2k-1+(-1)k= (-1)k-1-1+(-1)k= (-1)k=1
{an}的通项公式为: 当n为奇数时,an?= 当n为偶数时,
36(04年全国卷一文17). 等差数列{ }的前n项和记为Sn.已知
(Ⅰ)求通项 ;(Ⅱ)若Sn=242,求n
解:(Ⅰ)由 得方程组 解得
所以 (Ⅱ)由 得方程
解得
37(04年全国卷二理(19))、数列{an}的前n项和记为Sn,已知a1=1,an+1= Sn(n=1,2,3,…)
证明:(Ⅰ)数列{ }是等比数列;(Ⅱ)Sn+1=4an
证(I)由a1=1,an+1= Sn(n=1,2,3,…),知a2= S1=3a1, , ,∴
又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn= Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故数列{ }是首项为1,公比为2的等比数列
证(II) 由(I)知, ,于是Sn+1=4(n+1)? =4an(n )
又a2=3S1=3,则S2=a1+a2=4=4a1,因此对于任意正整数n≥1都有Sn+1=4an
38(04年全国卷二文(17))、已知等差数列{an},a2=9,a5 =21
(Ⅰ)求{an}的通项公式;(Ⅱ)令bn= ,求数列{bn}的前n项和Sn
解:a5-a2=3d,d=4,an=a2+(n-2)d=9+4(n-2)=4n+1;{bn}是首项为32公比为16的等比数列,Sn= .
出卷人是如何把高考中一道数学/物理压轴题设计出来的?
广东省的文化底蕴非常深厚,从唐宋元明清以来,就有着众多杰出的数学家、天文学家和物理学家。而现在的广东省高考数学题目也不仅仅是简单的计算和公式呀,越来越多的涉及到现实生活和科技发展。这也表明广东省教育部门在推动数学课程改革、提高学生创新思维和应用能力方面取得了巨大的成就。
我们再来聊一聊共情。无论是广东省还是其他省份的高考数学,其实都不是一件容易的事情。每个人的学习和考试压力都很大,如果有所失误也很正常。但是,我们都不要惧怕挑战,只要努力学习、充分准备,相信自己就能创造属于自己的更好成绩。同时,我们也要关心、理解和尊重身边的学生,营造一个良好的学习氛围。
总之,广东省高考数学平均分高不高并不是最重要的,重要的是在学习和备考过程中积极向上,努力拼搏,充分发挥自己的实力。相信大家都会收获自己想要的好成绩的!
出卷人是如何把高考中一道数学/物理压轴题设计出来的?
比如但不限于:如何把书本上的一条条知识点一点点演变成一道大题?考生不熟悉、没见过的新题目是如何被设计出来的?acel rovsion的回答(102票):谢谢邀请。。其实压轴题并不神秘,但是考虑到各省的出题方式其实差别还是蛮大的,我列举一下吧,其实上面已经答了一些了。一,通过一个既有的模型,数学结论,物理实验,物理现象,通过列举简化,或者给出相关资讯,来达到可以用教材知识思考的程度,有时候干脆直接出成理想实验题目或者资料类题目,这类题目往往突出的是细节,因为元素众多。二,大跨度改编。这个很好理解,就是明说了就将必修教材上某些常见的套路题进行大跨度改编,主要的方法分这么几种,1,隐藏条件,明明在教材上是条件明了的题目,将条件的给出门槛加高,使得一个问题被改变成数个小问题组成。2,在证明题方面将一些常见(练习题中会碰到)但是必修教材上没有的“结论性知识”做成条件。3,干脆将一些必要条件给删掉,变成“讨论题”,让学生分析细节,并对条件进行分类来答题。4,复杂化图形或者构件,这个在解析几何中比较多,主要考察数形结合。5,发散性题目。此类题目的方式,大概是把一个本来都被参考书玩烂了的东西,通过一种“新问题”的方式展现出现,甚至可能设多余条件恶意引导。三,组合嫁接。这个很简单,就是将几个单独的问题在一起,通过逆向推理的方法糅合成一个题目。而需要的就是学生要能够还原这个问题的本质,然后分开解决。这个在物理题目中特别常见,尤其是很多所谓的物理压轴题:不是把不同的运动过程组合在一起,就是把不同的状态以及条件融合在一起。比如那类又有多重的运动过程,又有电磁状态转换,又有条件变化的“大题”》四,方法或者思维组合,高中教育虽然老师通常会教你数学方法,比如什么是数形结合,什么是整体归一,等等,但是这些东西并不会系统的教给你,甚至有些极端一点的老师会让你去扫大量的题目来自己领悟。所以将集中思维方法结合在一起,也是很可以提高“区分度”的方法。举个例子,比如“简单的数列题就是要么等比要么等差,难一点会需要你将数列“解构”一下,然后再发现是等比还是等差。那么如果我们要恶心一点了,造这样一个数列,首先需要解构三次才能“还原”,而且还原过程中涉及到“解构项”本身数列的求和,其次他不是逐项等差或是等比,而是任意三项组成等比,端头和中间组成等差,而设计另一组同样恶心的数列,然后和原数列交叉对应。最后莫名其妙地给一个诱导公式,和第三组数列相关,最后第二组和第三组数列涉及在K+1项上的数学归纳”OK,这样一个恶心人的数列压轴题就出来了,题中涉及到突出转化,整体归一,分类讨论,归纳分析四种数学方法。然后学生看到就头大了。五,涉及特殊化的讨论。这个在数列题目甚至解析几何题目中都很常出现,就是一个非常复杂化的重合表示式或者图形,过程是分段或者分类的,你需要自己设计一些特殊化的情况才能对其解构分析,最典型的就是取特殊值和特殊点。当这个特殊化情形和方式越复杂,就能成为一道压轴题。六,数学化的能力和表述形式复杂化。这个原先只是出现在应用题,但是现在高考,尤其是录取率比较低的省份诸如江苏,山东,四川,两湖,两河之类的省份来说,应用题实在太拉不出差距了。所以就把这一套东西用在解析几何上或者数列上。这个还思路还比较新,一般的情况就是给你一个影象或者数列,然后“口头叙述一整段变化过程,口语化程度非常高“,考察你是否能够归纳成数学问题。七,这就是上面某位仁兄提到的,通过程式化的东西来倒推。比如利用简单的程式模型,造一个数列出来让你解,或者造一个莫名其妙的影象出来让你解。这个大部分情况下,是增加”技巧性“难度,这种情况尤其是在数列中比较多,解题思路简单,但是工程量大,而且途径单一,不容易想到。最后提一些其他的,大部分省的题库不是用来抽题的,而是将市面上的参考书等等东西涉及到的题目全部装在题库里面,用于参照,以免出现”重复题“或者”类似题“。其次,并非出题目的都是”大学老师“,大部分都是教育专业相关人士或者某些不在职的中学教师组成的”高考命题专家组“,一般来说,会有短一个月,长到两个月左右的”出题时间“,这段时间都有相对严格的保密措施(极端点可能包括限制出行),而且使用”分散出题“,所以除了专家组领导以外,大部分老师是不知道”最终版本“的卷子是什么样子的。最后,高考题目往往不止一套,标配是三套-五套。有些省,曾经会对于一套卷子的”难度分析“会通过组织一些”学生“(来源比较复杂,但是绝对保密筛选,而且水平必须参差不齐,互相有水平区分),来做一些”卷子“(不会是原版的高考卷子,而是将高考某一两道题目加以改编,夹杂在大部分题库题目里面,这样组成卷子)。从而来统计得分率和失误率。但是这一项措施大部分是在”省份自主命题“或者”课改“的时候,某些地区会做的手法,但是绝大部分情况下是不会出现的。曾昭颢的回答(1票):以江苏物理举栗江苏物理一般都是拿真实存在的元件或者模型,进行简化一下,简化到高中生能做的水平, 因为随便一个元件里面都包含了很多东西,而且考生都绝壁没见过。张秉宇的回答(2票):我大一的时候有位老师曾参加过高考命题。有一次他给我们简单提过一点,不是很多,希望对题主有帮助。(时间略久,以下不是他的原话,是我的演绎)他是基本遵从这样的方式,从简单的结论出发,倒著给出题目。考虑一些满足题目基本方向的工作,构造一系列结论的充分条件。比如我熟知关于等比级数的一些不等式,自然就设计数列和不等式了,然后我可以找一些和等比数列相关的递推,然后配合一些不等式基本性质,这样就能简单的做出一个题目了。下面是我自己的想法刚刚说到找充分条件,因为出题的有不少是大学老师,所以自然在自己的领域内有一些不为中学生/老师所知的东西,所以会让人有耳目一新的感觉。其实不少问题是自然而直接的,只是缺乏对问题充分的了解,从而造成了难度差异。比如有个例子是一些递推数列的题目,用蛛网迭代等一些技巧,是完全程式化的,但对中学生来说,就缺乏相应的了解,在12年全国大纲卷等一些试卷中被用来压轴。——————分割线——————说两句答非所问的话,我们老师当时还跟我们讲,他们命题组做的第一件事就是尽可能买了市面上所有的模拟题,然后坚决不出上面的题。
出卷人是如何把高考中一道数学/物理压轴题设计出来的?拜托各位了 3Q用一句话概括,是你学过的知识点的总和,比如说不等式,数列等,要求你不仅要掌握知识,还要善于灵活运用,所以多做一些高考真题非常非常有用!可以在课余自己整理,研究,记在一个专门的本子上,会发现其中的奥妙的!
望采纳谢谢你~
如何突破数学高考压轴题建议收集近五年得高考题压轴题和近三年模拟题的压轴题都做做,如果程度较好的同学可以直接分别做选择、填空、大题的最后两题,就是6题,这样可以省很多时间
如何保证高考理数压轴题全部解出来广东高考数学压轴题基本上包括:函式与导数;数列;圆锥曲线方程;不等式等。其中,函式思想渗透到每一个方面,可以这么说,函式占高中数学大半壁江山。函式一般要求单调性,可以对函式求导;数列是特殊的函式,要求通项公式,前n项和;圆锥曲线方程一般涉及直线与方程,弦长,中点,对称点,可以联立方程,应用韦达定理,设而不求等方法去求解。具体问题具体分析,没有什么一种方法可以解决全部问题的!有什么不明白可以再提问!
高考数学压轴题有多难 如何答好数学压轴题一般会很难,没有几个人能做出来。高考数学最后一道题一般是数列题,第一问一般是求通项,还算容易,如果数学学得好应该能做出来。后两问一般会比较难,短时间内很难做出来。其实很多人在150分钟内根本做不到最后一题,所以最好还是把心思放在前面的题上,把前面的题做好,也能拿高分,千万不要把时间浪费在最后一道题上。
硬币是如何设计出来的?
审定通过设计者画出的硬币图案后,有造币厂先做出柸胎模具,再进行装置压印,即为硬币。
高考,物理,压轴题,难吗这里刚高考完,高考压轴物理的话,平常情况确实难,但没必要物理考满分啊是不是,也不排除物理这一科很容易压轴也很容易的情况,还有就是地域差异,全国卷物理难度中等,如果是江苏这种省份的话就很难了,看看他们历届本科分数线都是两三百就可以看出来,我们老师说得好物理压轴题都是给上清华北大的学生们出的,我们只要把不难的题目写对就可以了