您现在的位置是: 首页 > 分数线 分数线

高考数学常见题型,高考数学常见题型分布

tamoadmin 2024-05-19 人已围观

简介1.高考数学中复数的几种常见题型各地不完全相同,一般有三角函数、期望方差、立体几何、解析几何、导数(函数),前面三题比较容易。高考数学复习方法中国的应试高考有时能改变人的一生,我们为什么不牢牢抓住并利用这个机会呢?如今的高考,考的并不是谁的逻辑思维强,也不是谁的基础知识强;而是在考谁能最快、最准做出题来,得更多的分,可见掌握应试教育的技巧是多么的重要。在应试教育中,只有多记公式,掌握解题技巧,熟悉

1.高考数学中复数的几种常见题型

高考数学常见题型,高考数学常见题型分布

各地不完全相同,一般有三角函数、期望方差、立体几何、解析几何、导数(函数),前面三题比较容易。

高考数学复习方法

中国的应试高考有时能改变人的一生,我们为什么不牢牢抓住并利用这个机会呢?

如今的高考,考的并不是谁的逻辑思维强,也不是谁的基础知识强;而是在考谁能最快、最准做出题来,得更多的分,可见掌握应试教育的技巧是多么的重要。

在应试教育中,只有多记公式,掌握解题技巧,熟悉各种题型,把自己变成一个做题机器,才能在考试中取得最好的成绩。在高考中只会做题是不行的,一定要在会的基础上加个“熟练”才行,小题一般要控制在每个两分钟左右。

高考注意事项

1、稿纸、手机是“禁品”

只允许携带规定的文具,包括考试用的铅笔、黑色字迹的钢笔、签字笔等,不得携带任何书籍、笔记、报纸、稿纸、涂改液、计算器、移动电话、电子记事本等物品。否则将取消当次科目的考试成绩或各科考试成绩。

2、须用2B铅笔、黑色的钢笔或签字笔

考生必须用2B铅笔作答客观题(选择题部分),用黑色的钢笔或签字笔在规定的答题区域作答各科主观题(非选择题部分)。考生必须在答题卡指定的各题目答题区域作答(包括画表及辅助线)。否则答案无效。

3、答题卡、试卷、草稿纸万万不可带出试室

正式考试开考60分钟后,考生方可交卷离开试室。提前交卷的考生在监考员清点试卷、答题卡无误后,并经监考员同意方可离开试室。正式考试结束后,考生应将试卷、答题卡反扣在桌面上,待监考员收齐试卷、答题卡点核无误,方可离开试室。考生不准将答题卡、试卷、草稿纸等带出,否则将被取消考试资格。

高考数学中复数的几种常见题型

高考数学题型分布情况一般是根据各省份高考的具体要求和考题情况而定,不同省份会有一定的差异,但总体来说,高考数学的题型主要包括以下几个方面:

选择题:选择题通常涉及到基本的数学知识点和计算技能,如运算、代数、几何、概率等。

填空题:填空题通常要求考生根据题目提供的信息,推导出答案并填入相应的空格中。

解答题:解答题通常是要求考生结合所学的数学知识,对一些较为复杂的问题进行分析和解答。

计算题:计算题主要是要求考生对所学的数学知识进行灵活运用,解决一些需要进行复杂计算的问题。

在各省份高考数学试卷中,以上四种题型的分布情况可能会有所不同,但大多数试卷会保持相对平衡,注重考查学生的数学思维能力和解决实际问题的能力。

高考数学复习点拨:复数的几种常见题型

复数的几种常见题型

山东 史纪卿 鲁彩凌

一、利用复数的代数形式

由复数的代数形式为知,用代入法解题是最基本且常用的方法.

例1 已知,且,若,则的最大值是(  )

A.6 B.5 C.4 D.3

解析:设,,那么.

,,,

,时,,故选C.

二、利用复数相等的充要条件

在复数集中,任意取两个数,,,且.

例2 已知复数,求实数使.

解:,

因为都是实数,所以由,得

两式相加,整理得.

解得,,

对应得,.

所以,所求实数为,或,.

三、利用复数除法法则以及虚数,的运算性质

1.形如,可以乘以分母的共轭复数,使分母"实数化";

2.熟记一些常用的结果:

(1)的周期性;

(2);

(3),;

(4);

(5)设,则的性质有:

①;

②,;

③.

例3 设,则集合中元素的个数是(  )

A.1 B.2 C.3 D.无穷多个

解析:因为,

所以当,,,时,,

集合,故答案为C.

四、利用共轭复数

复数与复数互为共轭复数.

例4 若是方程的一个根,求的值.

解:因为是实数,所以两根之和是实数,两根之积是实数;

又因为是方程的一个根,因此满足条件的另一个根必定是它的共轭复数,因此,,解得.

另解:把代入方程得,根据复数相等的充要条件,得且,解得.

注:两共轭复数的积:,即两共轭复数的积等于复数模的平方.

例5 若,,则的(  )

A.纯虚数 B.实数 C.虚数 D.不能确定

解析:若一个数的共轭复数是它的本身,则这个数是实数.

由,可知为实数.

故答案选B.

五、利用复数的几何意义

1.利用复数的模

复数的模.

例6 已和,求.

解:.

注:如果先化简再求模就会增大计算量.

2.利用复数加法及减法的几何意义

复数的加(减)法可按向量的平行四边(三角)形法则进行运算.

例7 设复数,满足,,求.

解:根据题意画出如图所示的平行四边形,

所以,.

因此,,.

得.

我们看到上面的解题方法互相关联,因此在解题时,要注意灵活解题,综合运用所学知识.来源于

文章标签: # 复数 # 高考 # 数学