您现在的位置是: 首页 > 分数线 分数线
2017高考卷数学云南,2017年云南数学高考试卷文科
tamoadmin 2024-06-27 人已围观
简介1.2017年高考理科数学全国1卷,选择题16题怎么做,求解答2.2017年高考试题全国各个省试题都一样吗3.2017年数学高考卷子的六道大题4.2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?2022云南高考用全国甲卷考试,满分750分。高考试题全国卷简称全国卷,教育部考试中心组织命制的、适用于全国大部分省区的高考试卷,目的在于保证人才选拔的公正性。高考全国卷不会因考题差别导致教材
1.2017年高考理科数学全国1卷,选择题16题怎么做,求解答
2.2017年高考试题全国各个省试题都一样吗
3.2017年数学高考卷子的六道大题
4.2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?
2022云南高考用全国甲卷考试,满分750分。高考试题全国卷简称全国卷,教育部考试中心组织命制的、适用于全国大部分省区的高考试卷,目的在于保证人才选拔的公正性。
高考全国卷不会因考题差别导致教材差别,一切都是遵照高考大纲命题的。高考后试卷不能拿走,高考试卷会密封后送到指定的阅卷场所,阅卷后的高考试卷属于高考档案的一种,要存档保留一定年限的,考生是无法再次接触到自己的高考试卷的。
注意。
模考是高考前比较重要的考试,对考生的心态影响很大。不但考生、老师要重视模考前后的心理调试,家长也要在力所能及的范围内帮助孩子正确对待这次考试。
2017年高考理科数学全国1卷,选择题16题怎么做,求解答
2017年高考使用全国Ⅰ卷的省份:
福建、河南、河北、山西、江西、湖北、湖南、广东、安徽。
山东省部分科目使用全国Ⅰ卷:
全国Ⅰ卷;外语、文综、理综, 自主命题:语文、文数、理数。
扩展资料:
(新课标Ⅱ卷)
2015年及其之前:贵州 甘肃 广西 青海 西藏 黑龙江 吉林 宁夏 内蒙古 新疆 云南 辽宁(综合)海南(语文 数学 英语)。
2015年增加省份:辽宁 (语文 数学 英语)。
2016年增加省份:陕西、重庆、;取消省份:广西 云南 贵州。
2018年使用省区:甘肃、青海、黑龙江、吉林、辽宁、宁夏、新疆、内蒙古、陕西、重庆、海南(语文、数学、英语)西藏2018使用的是全国三卷。
参考资料:高考试题全国卷_百度百科
2017年高考试题全国各个省试题都一样吗
作为一个8年前参加高考的老人来说,这个题目的话,设三角形ABC边长为X,体积为Y,然后取X范围为0~5根号3。然后你等边三角形ABC的话,你面积可以算出来,差不多是根号3/4的X?。然后高度的话,OF=5cm,然后减去O到AB的垂线距离,多少我懒得算了,反正不难。接下来三棱锥的体积公式算出来,然后根据x的范围,求出最大值。我记得好像要靠导数的,忘了,嘿嘿。
2017年数学高考卷子的六道大题
不一样,试卷选用情况如下:
全国I卷(全国乙卷):河南、河北、山西、安徽、湖北、湖南、江西、广东、福建、山东(注:2017年山东省仅英语、综合两科使用全国卷,语文、数学两科仍自主命题)
全国II卷(全国甲卷):黑龙江、吉林、辽宁、内蒙古、宁夏、甘肃、新疆、青海、西藏、陕西、重庆、海南(注:2017年海南省仅语文、数学、英语三科使用全国卷,物理/政治、化学/历史、生物/地理三科仍使用教育部为其单独命题的分科试卷)
全国III卷(全国丙卷):贵州、广西、云南、四川
自主命题:北京、天津、江苏、浙江、上海、山东(仅语文、数学两科)。
扩展资料不得参加高考的情形:
(1)具有高等学历教育资格的高校的在校生;或已被高等学校录取并保留入学资格的学生;
(2)高级中等教育学校非应届毕业的在校生;
(3)在高级中等教育阶段非应届毕业年份以弄虚作假手段报名并违规参加普通高校招生考试(包括全国统考、省级统考和高校单独组织的招生考试)的应届毕业生;
(4)因违反国家教育考试规定,被给予暂停参加普通高校招生考试处理且在停考期内的人员;
(5)因触犯刑法已被有关部门采取强制措施或正在者。
百度百科——2017年普通高等学校招生全国统一考试
2017年全国一卷数学高考题,如图,答案最后为什么写m>负一?
17.(12分)
△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长
18.(12分)
如图,在四棱锥P-ABCD中,AB//CD,且
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,,求二面角A-PB-C的余弦值.
19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ?).
(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;学科&网
(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)试说明上述监控生产过程方法的合理性;
(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:
9.95
10.12
9.96
9.96
10.01
9.92
9.98
10.04
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得,,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计μ和σ(精确到0.01).
附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ)=0.997?4,0.997?416≈0.959?2,.
20.(12分)
已知椭圆C:x?/a?+y?/b?=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,√3/2),P4(1,√3/2)中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
21.(12分)
已知函数=ae?^x+(a﹣2)e^x﹣x.
(1)?讨论的单调性;
(2)?若有两个零点,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4-4,坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=-1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
23.[选修4—5:不等式选讲](10分)
已知函数f(x)=–x?+ax+4,g(x)=│x+1│+│x–1│.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.
由前面推导可知,即由题设可知根的判别式=16(4K^2-m^2+1)>0,后面又求得k=-(m+1)/2
这样将k代入进去,4K^2-m^2+1>0
4ⅹ[-(m+1)/2]^2-m^2+1>0
化简得2m+2>0得m>-1
所以当且仅当m>-1时,根的判别式﹥0就是这样得来的。