您现在的位置是: 首页 > 分数线 分数线
高考数学题函数,高考函数经典题型及答案解析
tamoadmin 2024-06-11 人已围观
简介1.高考数学16题求帮忙 已知函数f(x)=2cos^2wx+sin2wx(w>0)的相邻两对称轴2.高考数学全国卷客观题:三角函数的图像与性质3.高三数学函数题4.高考数学基础题有哪些5.高三数学题,求过程6.高三数学函数最值问题有cos2B+cosB=0可知,用二倍角公式展开为2cosB^2+cosB-1=0,解方程可知cosB=1/2或者是cosB=-1因为B为三角形内角,不能为180,所以
1.高考数学16题求帮忙 已知函数f(x)=2cos^2wx+sin2wx(w>0)的相邻两对称轴
2.高考数学全国卷客观题:三角函数的图像与性质
3.高三数学函数题
4.高考数学基础题有哪些
5.高三数学题,求过程
6.高三数学函数最值问题
有cos2B+cosB=0可知,用二倍角公式展开为
2cosB^2+cosB-1=0,解方程可知cosB=1/2或者是cosB=-1
因为B为三角形内角,不能为180°,所以cosB不能为-1
所以cosB=1/2即B=60°
由三角形边和角的关系b^2=a^2+c^2-2ac*cosB可知
7=a^2+c^2-2ac*cosB ①
再有a+c=5可知
a^2+c^2+2ac=25 ②
再加上cosB=1/2 ③
联立①②③可算出
ac=6
三角形面积S
S=ac*sinB/2=6×sinB/2=3sinB
因为B=60°,所以sinB=根号3/2,即S=3/2 根号3
高考数学16题求帮忙 已知函数f(x)=2cos^2wx+sin2wx(w>0)的相邻两对称轴
当前,我们已进入高三一轮复习,函数是高中数学的核心内容,也是学习高等数学的基础,是数学中最重要的概念之一,它贯穿中学数学的始终。求函数解析式是函数部分的基础,在高考试题中多以选择、填空形式出现,属中低档题目,同学们务必要拿分。下面就向同学们介绍几种求函数解析式的常用方法:
[题型一]配凑法
例1.已知f(■+1)=x+2■,求f(x)。
分析:函数的解析式y=f(x)是自变量x确定y值的关系式,其实质是对应法则f:x→y,因此解决这类问题的关键是弄清对“x”而言,“y”是怎样的规律。
解:∵f(■+1)=x+2■=(■+1)2-1
(■+11)
∴f(x)=x2-1(x1)
小结:此种解法为配凑法,通过观察、分析,将右端“x+2■”变为接受对象“■+1”的表达式,即变为含(■+1)的表达式,这种解法对变形能力、观察能力有一定的要求。
[题型二]换元法
例2.已知f(1-cosx)=sin2x,求f(x)。
分析:视1-cosx为一整体,应用数学的整体化思想,换元即得。
解:设t=1-cosx
∵-1cosx1 ∴01-cosx2 即0t2
∴cosx=1-t
∴sin2x=1-cos2x=1-(1-t)2=-t2+2t
∴f(t)=-t2+2t(0t2)
即f(x)=-x2+2x(0x2)
小结:①已知f[g(x)]是关于x的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x替换t,便得f(x)的解析式。
注意:换元后要确定新元t的取值范围。
②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。
[题型三]待定系数法
例3.设二次函数f(x)满足f(x+2)=f(2-x),且f(x)=0的两实根平方和为10,图象过点(0,3),求f(x)的解析式。
分析:由于f(x)是二次函数,其解析式的基本结构已定,可用待定系数法处理。
解:设f(x)=ax2+bx+c(a≠0)
由f(x+2)=f(2-x)可知,该函数图象关于直线x=2对称
∴-■=2,即b=-4a……①
又图象过点(0,3) ∴c=3……②
由方程f(x)=0的两实根平方和为10,得(-■)2-■=0
即b2-2ac=10a2……③
由①②③解得a=1,b=-4,c=3
∴f(x)=x2-4x+3
小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)=■(k≠0);f(x)为二次函数时,根据条件可设
①一般式:f(x)=ax2+bx+c(a≠0)
②顶点式:f(x)=a(x-h)2+k(a≠0)
③双根式:f(x)=a(x-x1)(x-x2)(a≠0)
[题型四]消元法
例4.已知函数y=f(x)满足af(x)+bf(■)=cx,其中a、b、c都是非零常数,a≠±b,求函数y=f(x)的解析式。
分析:求函数y=f(x)的解析式,由已知条件知必须消去f(■),不难想到再寻找一个方程,构成方程组,消去f(■)得f(x)。如何构成呢?充分利用x和■的倒数关系,用■去替换已知中的x便可得到另一个方程。
解:在已知等式中,将x换成■,得af(■)+bf(x)=■,把它与原条件式联立,得af(x)+bf(■)=cx……①af(■)+bf(x)=■……②
①×a-②×b得(a2-b2)f(x)=c(ax-■)
∵a≠±b ∴f(x)=■(ax-■)(x≠0)
(周六继续刊登)
有同学通过QQ询问下面的数学题,我们请天津四中的孟黎辉老师来回答。
问1.已知:方程:x2+ax+a+1=0的两根满足一个条件:一根大于k,一根小于k(k是实数),求a的取值范围。(此题一种方法是图象法,还有一种方法,能告诉这两种方法吗?)
答:方法一:∵f(x)=x2+ax+a+1图象为开口向上的抛物线,因此只需f(k)<0即可。
∴k2+ak+a+1<0,即a(k+1)<-k2-1
∴当k>-1时,a<■;当k<-1时,a>■;当k=-1时,a无解。
方法二:(x1-k)(x2-k)<0△>0
只需(x1-k)(x2-k)<0即可,x1x2-k(x1+x2)+k2<0
即a+1+ka+k2<0,以下同方法一。
问2.为什么求解时只需求(x1-k)(x2-k)<0,而不需再求根的判别式是否大于0?
答:法二不需要验判别式,原因可以举个简单例子说明,如:若研究x2+ax+b=0两根满足:一个根大于0,一个根小于0,只需x1x2<0,即:b<0,此时就可以保证△=a2-4b>0恒成立。
高考数学全国卷客观题:三角函数的图像与性质
f(x)=2cos^2wx+sin2wx(w>0)
=1+cos2wx+sin2wx
=1+√2sin(2wx+π/4)
∵相邻两对称轴的距离为派/2
∴T/2=π/2,T=π, 2π/(2w)=π
∴w=1
2
f(x)向下平移一个单位得
g(x)=√2sin(2x+π/4)
∵x∈[0,派/2]
∴2x+π/4∈[π/4,5π/4]
∴2x+π/4=5π/4,g(x)min=-1
2x+π/4=π/2,g(x)max=√2
g(x)在[0,派/2]上的取值范围是[-1,√2]
高三数学函数题
(2)
4.若 ,则
(5)若 ,则
5.已知角 的顶点与原点重合,始边与 轴的正半轴重合,终边在直线 上,则
9.若 是第三象限的角,则
(9)已知 ,函数 在 单调递减,则 的取值范围是
(15)设当 时,函数 取得最大值,则 .
(14)函数 的最大值为 .
(6)如图,圆 的半径为 , 是圆上的定点, 是圆上的动点,角 的始边为射线 ,终边为射线 ,过点 作直线 的垂线,垂足为 . 将点 到直线 的距离表示成 的函数 ,则 在 的图像大致为
(8)设 ,且 ,则
(8)函数 的部分图像如图所示,则 的单调递减区间为
(14)函数 的图像可由函数 的图像至少向右平移 个单位长度得到.
(7)若将函数 的图像向左平移 个单位长度,则平移后图像的对称轴为
(9)若 ,则
6.设函数 ,则下列结论错误的是
的一个周期为
的图像关于直线 对称
的一个零点为
在 单调递减
14.函数 的最大值是 .
9.已知曲线 ,则下面结论正确的是
A.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线
B.把 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
C.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线
D.把 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线
15.函数 在 的零点个数为 .
10.若 在 是减函数,则 的最大值是
15.已知 则 .
9.下列函数中,以 为周期且在 区间单调递增的是
10.已知 ,则
5.函数 在 的图像大致为
11.关于函数 有下述四个结论:
(1) 是偶函数
(2) 在区间 单调递增
(3) 在 有 4 个零点
(4) 的最大值为 2
其中所有正确结论的编号是
A.①②④
B.②④
C.①④
D.①③
设函数 . 若存在 的极值点 满足 ,则 的取值范围是
设函数 ,已知 在 有且仅有5个零点,下述四个结论:
① 在 有且仅有3个极大值点
② 在 有且仅有2个极大值点
③ 在 单调递增
④ 的取值范围是
其中所有正确结论的编号是
A.①④
B.②③
C.①②③
D.①③④
高考数学基础题有哪些
(I)e^x是单调递增函数,因此只要a>0,f(x)就是单调递增函数;
f(x)只与y轴相交,交点A:x=0,y=a;
g(x)=ln(x/a),只与x轴相交,交点B:x=a,g(x)=0;
OAB是等边直角三角形,|AB|=a√2;
点到曲线的距离,与点到直线的距离意义一样,由该点项曲线作“垂线”,点与垂足的连线就是点到该曲线的距离,这个距离在垂足附近最短。这个“垂线”指的是,距离线与垂足处曲线的切线相互垂直。
|AB|是f(x),g(x)上最短距离,意味着,f(x)在A点的切线,g(x)在B点的切线都垂直于AB,AB斜率kAB=(0-a)/(a-0)=-1,切线斜率k=1
f'(x)=ae^x,f'(x)=a=1,
g'(x)=a/x*(1/a)=1/x
g'(a)=1/a=1
a=1
(II)a=1,不等式成为:(x-m)/lnx≥√x,x>0;√x>0;
x=1时,lnx=0,不等式左边无定义,因此以此点分界,分别讨论:
0<x<1时,lnx<0,但是(x-m)/lnx≥√x>0,因此,x-m<0,m>x,必须有m≥1;
(x-m)≤√xlnx,设z=(x-m)-√xlnx≤0;
z'=1-lnx/2√x-√x/x=1-lnx/2√x-1/√x=1-(0.5lnx+1)/√x=1-(ln√x+1)/√x=1-ln[1/(√x)^(√x)]-1/√x
0<x<1;0<√x<1;1/√x>1;0<(√x)^(√x)<1,1/(√x)^(√x)>1,ln[1/(√x)^(√x)]>0;
因此,z'<0,函数递减,只要x->0时,z<0即可;
x->0时,√xlnx是0*∞型不定式,用洛必达法则,先化成∞/∞型,分子分母分别求导:
√xlnx《=》lnx/x^(-0.5)《=》(1/x)/(-0.5x^(-1.5))=-2√x->0,
x->0时,z->-m<0,m>0即可。
因此:m≥1;
x>1时,lnx>0,x-m≥√xlnx>0,x-m>0,m<x,对于所有x>1,恒成立,因此m≤1.
设z=(x-m)-√xlnx≥0;
z'=1-ln[1/(√x)^(√x)]-1/√x
x>1,√x>1,0<1/√x<1,(√x)^(√x)>1,0<1/(√x)^(√x)<1,ln[1/(√x)^(√x)]<0,
z'=1-ln[1/(√x)^(√x)]-1/√x>0,x>1时,z单调递增,只要x->1时,z≥0即可;
x->1,z->1-m≥0,m≤1.
结合起来,m=1;
高三数学题,求过程
高考数学基础题二次函数、复合函数。
1、二次函数。
二次函数解析式的三种形式:
一般式:f(x)=ax2+bx+c(a≠0)。?
顶点式:f(x)=a(x-m)2+n(a≠0)。
零点式:f(x)=a(x-x1)(x-x2)(a≠0)。?
辨明两个易误点:
对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况。
幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点。
2、复合函数。
设函数Y=f(u)的定义域为D,函数u=φ(x)的值域为Z,如果D∩Z,则y通过u构成x的函数,称为x的复合函数,记作Y=f(φ(x))。
x为自变量,y为因变量,而u称为中间变量。? 如等都是复合函数。? 就不是复合函数,因为任何x都不能使y有意义。由此可见,不是任何两个函数放在一起都能构成一个复合函数。
高考数学必备技巧:
1、三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。
2、做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。
3、一定要全面了解数学概念,不能以偏概全。
4、学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。
5、要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。
6、要主动提高综合分析问题的能力,借助文字阅读去分析理解。
7、在学习中,要有意识地注意知识的迁移,培养解决问题的能力。
8、要将所学知识贯穿在一起形成系统,我们可以运用类比联系法。
9、将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。
10、在数学学习中可以利用口诀将相近的概念或规律进行比较,搞清楚它们的相同点,区别和联系,从而加深理解和记忆。弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。
高三数学函数最值问题
解:
1)将x=-1带入方程得f(-1)=1,解得a=1。原函数可化为:f(x)=x^3-3x-1
对函数进行求导f‘(x)=3(x+1)(x-1),由此可知函数在(-∞,-1],[1,∞)上递增,在[-1,1]上递减,故带入起始点和极值点得:f(-2)=-3,f(-1)=1,f(1)=-3,f(3)=17,所以f(x)在区间[-2,3]上的值域为[-3,17]
2)将问题转化为函数切线的问题,即保证直线的位置在原函数斜率为9的两条切线之间,
对函数进行求导f‘(x)=3(x+1)(x-1),令f‘(x)=9,解得x=±2,f(-2)=-3,f(2)=1;
故函数的两条切线方程为y=9x+15,y=9x-17,因此,m取值范围为(-17,15)
解:f(x)=x?-3x+1/(x-1)+3
f'(x)=2x-3-1/(x-1)?
令f'(x)=0得:
2x-3-1/(x-1)?=0
(2x-3)(x-1)?=1
2x?-7x?+8x-4=0
(x-2)(2x?-3x+2)=0
则x=2
∵1<x<2时,f‘(x)<0
x>2时,f'(x)>0
∴fmin=f(2)=4-6+1+3=2