您现在的位置是: 首页 > 分数线 分数线

高考数学16个答题模板,数学高考答题模板

tamoadmin 2024-06-09 人已围观

简介1.2022高考数学选择题答题方法2.高考数学选择题答题技巧3.高考数学常考题型答题技巧与方法4.高考数学答题技巧5.成人高考数学答题技巧公式6.成人高考专升本数学答题技巧7.高考数学函数答题方法和技巧 高考数学常考的题分别是三角函数或数列,概率,立体几何,解析几何(圆锥曲线),函数与导数。数学想考高分,基础是最重要的,这也是很多学生数学成绩一直不好的核心原因,牢记基本公式和基本定理,根据课本目录

1.2022高考数学选择题答题方法

2.高考数学选择题答题技巧

3.高考数学常考题型答题技巧与方法

4.高考数学答题技巧

5.成人高考数学答题技巧公式

6.成人高考专升本数学答题技巧

7.高考数学函数答题方法和技巧

高考数学16个答题模板,数学高考答题模板

高考数学常考的题分别是三角函数或数列,概率,立体几何,解析几何(圆锥曲线),函数与导数。数学想考高分,基础是最重要的,这也是很多学生数学成绩一直不好的核心原因,牢记基本公式和基本定理,根据课本目录,能熟练回忆出课本上所有知识点,真正打牢基础。

高考数学答题注意事项

越是容易的题要越小心,因为这样的题很可能有陷阱。

出现怪异的答案的题要小心,因为很有可能计算错误。

任何带有数字的题要多问一下自己,有没有遗漏答案,如出现2的答案,就要考虑-2有没有可能也是答案。

最后一道填空题很有可能是难题,如果不能马上解出,应迅速放在一边进行下面答题,毕竟这道题再难也分数也有限,不应恋战。

数学常考题答题套路

恒成立问题或是它的反面,能够转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。

圆锥曲线的题目优先选择它们的定义完成,直线与圆维曲线相交问题,若与弦的中点相关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。

求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。

求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。

三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。

2022高考数学选择题答题方法

高考数学必考题型及答题技巧如下:

1、?三角函数题型

注意归一公式、诱导公式的正确性。转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误。

2、?圆锥曲线题型

注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;注意直线的设法;注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等。

3、?统计与概率题型

掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题;理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。注意计数时利用列举、树图等基本方法。

4、?函数与导数题型

导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。

5、?导数极值题型

先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号)。

高考数学选择题答题技巧

高考数学选择题总共有12道,一道题是5分,所以同学们在答选择题的时候,一定要仔细、运用一些答题技巧,能少错一道就多拿5分。这次我给大家整理了高考数学选择题答题 方法 ,供大家阅读参考。

目录

高考数学选择题答题方法

高考数学选择题题型特点

高考数学选择题秒杀技巧

高考数学选择题应该怎么做

高考数学选择题答题方法

一、重视基础知识

想要在高考选择题上拿满分,就要从三个方面去解决。基础理论和基本概念是考生们的一个额薄弱环节,所以必须要在这里下功夫,实际上它的选择题里要考的东西往往是我们原来的定义或是性质,或者是一个定理的外延,所以考生在复习一个定理和一个性质的时候,既要注意它的内涵也要注意相应的外延。

二、注重理解运用

高考选择题考察的主要还是对知识、概念的理解应用和辨析。尤其是语文、英语、文综、化学、生物,几乎都是要对题干和选项进行比较和辨析才能选出最佳答案。至于数学、物理则更多的是对概念的理解。所以我们在日常备考复习的时候要多注意一下对知识的理解和应用,在处理选择题上,能节约大量的时间,并且提高准确率。

三、注意 总结 归纳

很多的考生在复习备考的时候,对于基础知识进行归纳,对大题的难题进行回顾,但是对于选择题却没有一种很好的总结归纳方法。语文、英语单选题最多把正确答案代入,看一遍也就基本没什么了。阅读或是完形通过上下文理解一下,也就草草结束了。在理科学科上,选择题想要得满分还是要花费一些时间的。但是往往是参照着“标准答案”去回顾。因为“标准答案”基本上都是计算为主,当解答题处理的。我们要想出不同的解决途径。

<<<

高考数学选择题题型特点

(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。

(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。在高考的数学选择题中,定量型的试题所占的比重很大。而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。

(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。

(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。

(5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

<<<

高考数学选择题秒杀技巧

1、直接法

从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择进行对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。

2、特例法

运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好。

3、图解法

利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。

4、验证法

选择中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。

5、筛选法(也叫排除法、淘汰法)

充分运用选择题中单选题的特征,即有且只有一个正确选择这一信息,从选择入手,根据题设条件与各选择的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确。

<<<

高考数学选择题应该怎么做

代入法

高考数学的选择题中大部分是数值类型的,为了节省时间,可以逆向去推算,把答案去带入到题中去,逐一验证总会找到答案的,这就是代入法,是快速且有效的一种高考数学选择题解题技巧。应用代入法的前提是正常解题时间比代入法时间长。

数形结合

高考数学题最常用的就是数形结合法,由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来,也是数学选择题最直观的解题技巧之一。

估值选择

有些高考数学选择题,由于题目条件限制,没有直接的条件进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法,这种方法最大的优点就是快。

对于自己实在不会的高考数学选择题,最常用的一招就是蒙了,但是蒙也是有技巧的,在蒙的时候如果是数值类型的,大多数要选择“0”或者“1”,或者选择数值最小的,这是高考数学选择题比较常见的答案,选择蒙是为了更好的节约时间用在下面的题目里面。

检验法

对于具有一般性的数学选择题问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

<<<

2022高考数学选择题答题方法相关 文章 :

★ 高职高考数学考试答题技巧

★ 高三数学教师教学工作总结

★ 河南高考时间2022最新一览

★ 2022高考物理必考知识点总结

★ 2022高三教师个人工作计划

★ 高三数学教学工作计划范本2022

★ 江苏高考报名时间2022具体时间

★ 高三教师工作计划通用模板

★ 高三数学教师工作总结模板

★ 高考语文阅读答题技巧方法

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高考数学常考题型答题技巧与方法

高考数学选择题答题技巧,内容如下:

1、直接法

当选择题是由计算题、应用题、证明题、判断题改编成的时,可直接按计算题、应用题、证明题、判断题来做,确定答案之后,从选项里找即可。

2、筛选法(排除法)

去伪存真,筛除一些较易判定的的、 不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。如筛去不合题意的以后, 结论只有一个,则为应选项。

3、特殊值法

根据答案中所提供的信息,选择某些特殊情况进行分析,或某些特殊值进行计算,或将字母 参数换成具体数值代入,或将比例数看成具体数带人,总之,把一般形式变为特殊形式,再进行判断往往十分简单。

4、验证法(代入法)

将各选项逐个代入题干中,进行验证、或适当选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。

5、图象法

可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。

6、试探法

综合性较强、选择对象比较多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。

7、猜答(语感法)

选择题存在凭猜答得分的可能性,我们称为机遇分。

高考数学必考的题型:

1、函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

2、平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

3、数列及其应用

这部分是高考的重点而且是难点,要出-些综合题。

4、不等式.

主要考查不等式的求解和证明,且很少单独考查,主要是在解答题中比较大小。高考的重点和难点。

5、概率和统计

这部分和我们的生活联系比较大,属应用题。

6、空间位置关系的定性与定份析

主要是证明平行或垂直,求角和距离。要考察对定理的熟悉程度、运用程度。

7、解析几何

考的难点,运算大,一般含参数。

高考数学答题技巧

#高考# 导语锲而舍之,朽木不折;锲而不舍,金石可镂。高考也需要这样持之以恒的精神。 为您提供高考数学常考题型答题技巧与方法,快来学学吧!

 1、解决绝对值问题

 主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

 具体转化方法有:

 ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

 ③两边平方法:适用于两边非负的方程或不等式。

 ④几何意义法:适用于有明显几何意义的情况。

2、因式分解

 根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

 提取公因式

 选择用公式

 十字相乘法

 分组分解法

 拆项添项法

3、配方法

 利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

4、换元法

 解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

 设元→换元→解元→还元

 5、待定系数法

 待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设②列③解④写

6、复杂代数等式

 复杂代数等式型条件的使用技巧:左边化零,右边变形。

 ①因式分解型:

 (-----)(----)=0两种情况为或型

 ②配成平方型:

 (----)2+(----)2=0两种情况为且型

 7、数学中两个最伟大的解题思路

 (1)求值的思路列欲求值字母的方程或方程组

 (2)求取值范围的思路列欲求范围字母的不等式或不等式组

8、化简二次根式

 基本思路是:把√m化成完全平方式。即:

9、观察法

 10、代数式求值

 方法有:

 (1)直接代入法

 (2)化简代入法

 (3)适当变形法(和积代入法)

 注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程

 方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

 (1)按照类型求解

 (2)根据需要讨论

 (3)分类写出结论

 12、恒相等成立的有用条件

 (1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

 (2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

13、恒不等成立的条件

 由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

 14、平移规律

 图像的平移规律是研究复杂函数的重要方法。平移规律是:

15、图像法

 讨论函数性质的重要方法是图像法——看图像、得性质。

 定义域图像在X轴上对应的部分

 值域图像在Y轴上对应的部分

 单调性从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

 最值图像点处有值,图像最低点处有最小值

 奇偶性关于Y轴对称是偶函数,关于原点对称是奇函数

16、函数、方程、不等式间的重要关系

 方程的根

 ▼

 函数图像与x轴交点横坐标

 ▼

 不等式解集端点

17、一元二次不等式的解法

 一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

 二次化为正

 ▼

 判别且求根

 ▼

 画出示意图

 ▼

 解集横轴中

18、一元二次方程根的讨论

 一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

 题意

 ▼

 二次函数图像

 ▼

 不等式组

 不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

19、基本函数在区间上的值域

 我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

 (1)定义域没有特别限制时---记忆法或结论法;

 (2)定义域有特别限制时---图像截断法,一般思路是:

 画出图像

 ▼

 截出一断

 ▼

 得出结论

20、最值型应用题的解法

 应用题中,涉及“一个变量取什么值时另一个变量取得值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

 设变量

 ▼

 列函数

 ▼

 求最值

 ▼

 写结论

21、穿线法

 穿线法是解高次不等式和分式不等式的方法。其一般思路是:

 首项化正

 ▼

 求根标根

 ▼

 右上起穿

 ▼

 奇穿偶回

 注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

成人高考数学答题技巧公式

数学高考答题技巧与答题方法是如下:

1、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是。4、选择与填空中出现不等式的题目,优选特殊值法。5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。

成人高考专升本数学答题技巧

成人高考数学答题技巧公式为套题选不同。

一般来说前面几道题非常容易,可以把4个选项往题目里面套,看哪个答案符合,就是正确答案。据统计,选择题,ABCD任意一个选项成为正确答案的次数为3—5次。那么一题都不会写,也一定要全部的答满,不能全部写一样的答案这样会一分都没有。

只会写1-2题,剩下的题都写跟自己会写题的答案不一样的选项,这样至少可以得20分。例如,会写的题一题选A,一题选B,那么不懂写的15题都写C或者D。懂写3题以上,看看自己懂写的答案中ABCD哪个选项出现的次数少,那么不懂写的题目都写那个选项,这样至少可以得30分以上。

成人高考填空题和简答题的答题思路:

填空题一般出现其中有一题答案是0,1,2的可能性很大,实在每题都不会写,就4题都写0或1或2,但写1的概率相对0、2会高一点。如果你时间充足的话,可以把0,1,2套进答案可能是整数的题目里面试试,这样运气好就能做对一两题。

解答题完全不懂也不要放弃解答题的分数,解答题的特点是一层一层往下求解,最终求出一个答案。解答题的答题步骤,先写上解,再写依题意可得(题目中已知的数据写上去),跟上公式,计算得,最后写答。

高考数学函数答题方法和技巧

对于成人高考专升本数学答题技巧介绍如下:

1、选择题:一般情况下选择题前面几道题非常简单,可以把选项一个一个往题目里面套,你感觉哪个正确就选哪个即可,据统计,17道选择题,ABCD任意一个选项成为正确答案的次数为3-5次。只会写1-2题,剩下的15题都写跟自己懂写题的答案不一样的选项,这样至少可以得20分。例如,会写的题一题选A,一题选B,那么不懂写的15题都写C或者D。

2、填空题:填空题和选择题相比没有选项可借鉴,那怎么办呢?给你个小技巧,一般情况下选择题的答案出现0、1、2的概率是非常大的,你如果不会做那就拿着这三个数往里面套,感觉哪个对,就填那个。切忌一点,不要都填一样的,上面的选择题也是,不能选一样的,否则0分。

3、解答题:首先,你把“解”字写上,写这1个字就给你1-2分。然后把公式列上,就是和这个题目相类似的公式,想到几个写几个,这样不管对不会,老师也会给你2-3分。这样你大约能得到3-5分了,当然后面还可以把答写上。中间的步骤就是把你写的公式变化一下,能顺下来多少是多少。

#高三# 导语怎么答好高考数学函数题? 整理了高考数学函数题答题技巧和方法,供参考。

  高考函数体命题方向

 高考函数与方程思想的命题主要体现在三个方面

 ①是建立函数关系式,构造函数模型或通过方程、方程组解决实际问题;

 ②是运用函数、方程、不等式相互转化的观点处理函数、方程、不等式问题;

 ③是利用函数与方程思想研究数列、解析几何、立体几何等问题.在构建函数模型时仍然十分注重“三个二次”的考查.特别注意客观形题目,大题一般难度略大。

  高考数学函数题答题技巧

 对数函数

 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

 对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

 (1)对数函数的定义域为大于0的实数集合。

 (2)对数函数的值域为全部实数集合。

 (3)函数总是通过(1,0)这点。

 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

 (5)显然对数函数无界。

 指数函数

 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得

 可以得到:

 (1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

 (2)指数函数的值域为大于0的实数集合。

 (3)函数图形都是下凹的。

 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

 (6)函数总是在某一个方向上无限趋向于x轴,永不相交。

 (7)函数总是通过(0,1)这点。

 (8)显然指数函数无界。

 奇偶性

 一般地,对于函数f(x)

 (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

 说明:①奇、偶性是函数的整体性质,对整个定义域而言

 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。

 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)

 ③判断或证明函数是否具有奇偶性的根据是定义

  函数的性质与图象

 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫.

 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是:

 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性.

 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数值和最小值的常用方法.

 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力.

 这部分内容的重点是对函数单调性和奇偶性定义的深入理解.

 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.

 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.

 这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求.

文章标签: # 函数 # 数学 # 高考