您现在的位置是: 首页 > 分数线 分数线

高考数学概率大题文科_高考真题概率文科

tamoadmin 2024-06-07 人已围观

简介1.寻找高考概率题2.求2011年湖北省高考文史类数学第13题解题过程及答案3.2023全国甲卷文科数学难度4.2007年湖南高考文科数学第7题5.高考文科数学概率题必须用列出所有情况才能得分?(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法

1.寻找高考概率题

2.求2011年湖北省高考文史类数学第13题解题过程及答案

3.2023全国甲卷文科数学难度

4.2007年湖南高考文科数学第7题

5.高考文科数学概率题必须用列出所有情况才能得分?

高考数学概率大题文科_高考真题概率文科

(1)了解随机事件的发生存在着规律性和随机事件概率的意义.

(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.

(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.

(4)会计算事件在n次独立重复试验中恰好发生k次的概率.

而理科内容多了1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差;

寻找高考概率题

只要是正确的知识,都可以用来解题的!只不过在概率这里高考考纲要求文科学生会用列举法找出所有的可能性就可以的,所以文科高考的概率题不会出现可能性多于36种的题,因此,建议文科学生还是以列举法为主吧,一旦使用排列组合出现不规范的情况,失分就太可惜了!!

求2011年湖北省高考文史类数学第13题解题过程及答案

1、(本小题满分12分)某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):

(Ⅰ)恰好有两家煤矿必须整改的概率;

(Ⅱ)平均有多少家煤矿必须整改;

(Ⅲ)至少关闭一家煤矿的概率.

2、(本小题满分12分)

甲、乙、丙3人投篮,投进的概率分别是

(I)现3人各投篮1次,求3人都没有投进的概率;

(II)用 表示乙投篮3次的进球数,求随机变量 的概率分布及数学期望

3、(本小题满分12分)

某运动员射击一次所得环数X的分布如下:

X 0-6 7 8 9 10

p 0 0.2 0.3 0.3 0.2

现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为 。

(Ⅰ)求该运动员两次都命中7环的概率:

(Ⅱ)求 的分布列:

(Ⅲ)求 的数学期望E

4、(本小题满分12分)

某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须整改.若整改后经复查仍不合格,则强制关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01):

(Ⅰ)恰好有两家煤矿必须整改的概率;

(Ⅱ)某煤矿不被关闭的概率;

(Ⅲ)至少关闭一家煤矿的概率.

5、(本小题满分12分)

甲,乙,丙三人投篮,投进的概率分别是25,12,35。现3人各投篮1次,求

(Ⅰ)3人都投进的概率;

(Ⅱ)3人中恰有2人投进的概率。

6、(本小题满分12分)

一条生产线上生产的产品按质量情况分为三类: 类、 类、 类. 检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有 类产品或2件都是 类产品,就需要调整设备,否则不需要调整. 已知该生产线上生产的每件产品为 类品, 类品和 类品的概率分别为 , 和 ,且各件产品的质量情况互不影响.

(Ⅰ)求在一次抽检后,设备不需要调整的概率;

(Ⅱ)若检验员一天抽检3次,以 表示一天中需要调整设备的次数,求 的分布列和数学期望.

7、(本小题满分12分)

某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出两个红球可获得奖金50元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.令ξ表示甲、乙两人摸球后获得的奖金总额.求

(1)ξ的分布列; (2)ξ的数学期望.

8、(本小题满分12分)

某商场举行抽奖促销活动,抽奖规则是:从装有9个白球、1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球获得二等奖;摸出两个红球获得一等奖.现有甲、乙两位顾客,规定:甲摸一次,乙摸两次.求

(1)甲、乙两人都没有中奖的概率;

(2)甲、乙两人中至少有一人获二等奖的概率.

9、(本小题满分12分)

一条生产线上生产的产品按质量情况分为三类: 类、 类、 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有 类产品或2件都是 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为 类品, 类品和 类品的概率分别为 , 和 ,且各件产品的质量情况互不影响.

(Ⅰ)求在一次抽检后,设备不需要调整的概率;

(Ⅱ)若检验员一天抽检3次,求一天中至少有一次需要调整设备的概率.

10、(本小题满分12分)

在添加剂的搭配适用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较,在试制某种牙膏新品种时,需要选用两种不同的添加剂。现在芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据实验设计学原理,通常首先要随机选取两种不同的添加剂进行搭配实验。用 表示所选用的两种不同的添加剂的芳香度之和。

(Ⅰ)写出 的分布列:(以列表的形式给出结论,不必写计算过程)

(Ⅱ)求 的数学期望E 。(要求写出计算过程或说明道理)

11、(本小题满分12分)

现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为 、 、 ;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是 ,设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为 ,对乙项目每投资十万元, 取0、1、2时, 一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量 、 分别表示对甲、乙两项目各投资十万元一年后的利润.

(I) 求 、 的概率分布和数学期望 、 ;

(II) 当 时,求 的取值范围.

12、(本大题满分12分)

某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为 ;在实验考核中合格的概率分别为 ,所有考核是否合格相互之间没有影响

(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(Ⅱ)求这三人该课程考核都合格的概率。(结果保留三位小数)

13、(本大题满分12分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。

(Ⅰ)求所选用的两种不同的添加剂的芳香度之和等于4的概率;

(Ⅱ)求所选用的两种不同的添加剂的芳香度之和不小于3的概率;

14、(本小题满分12分)

甲、乙两班各派2名同学参加年级数学竞赛,参赛同学成绩及格的概率都为0.6,且参赛同学的成绩相互之间没有影响,求:

(1)甲、乙两班参赛同学中各有1名同学成绩及格的概率;

(2)甲、乙两班参赛同学中至少有1名同学成绩及格的概率.

15、(本大题满分12分)

某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”则该课程考核“合格”,甲、乙、丙三人在理论考核中合格的概率分别为 ;在实验考核中合格的概率分别为 ,所有考核是否合格相互之间没有影响

(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率;

(Ⅱ)求这三人该课程考核都合格的概率。(结果保留三位小数)

16、(本小题共13分)

某公司招聘员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过;

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

假设某应聘者对三门指定课程考试及格的概率分别是a,b,c,且三门课程考试是否及格相互之间没有影响.

(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;

(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)

17、(本小题满分12分)

A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效,若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组,设每只小白鼠服用A有效的概率为 ,服用B有效的概率为 。

(Ⅰ)求一个试验组为甲类组的概率。

(Ⅱ)观察3个试验组,用 表示这3个试验组中甲类组的个数,求 的分布列和数学期望。

18、(本小题满分12分)

某射手进行射击训练,假设每次射击击中目标的概率为 ,且各次射击的结果互不影响.

(Ⅰ)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);

(Ⅱ)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);

(Ⅲ)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.

19、(本小题共13分)

某公司招聘员工,指定三门考试课程,有两种考试方案.

方案一:考试三门课程,至少有两门及格为考试通过:

方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.

假设某应聘者对三门指定课程考试及格的概率分别是0.5,0.6,0.9,且三门课程考试是否及格相互之间没有影响.求:

(Ⅰ)该应聘者用方案一考试通过的概率;

(Ⅱ)该应聘者用方案二考试通过的概率.

20、(本小题满分12分)

A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效,若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为 ,服用B有效的概率为 .

(Ⅰ)求一个试验组为甲类组的概率;

(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.

21、(本小题满分12分)

甲、乙两台机床相互没有影响地生产某种产品,甲机床产品的正品率是0.9,乙机床产品的正品率是0.95.

(Ⅰ)从甲机床生产的产品中任取3件,求其中恰有2件正品的概率(用数字作答);

(Ⅱ)从甲、乙两台机床生产的产品中各任取1件,求其中至少有1件正品的概率(用数字作答).

22、(本小题满分12分)

某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。

(I)用 表示抽检的6件产品中二等品的件数,求 的分布列及 的数学期望;

(II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝购买的概率。

23、甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球,现从甲、乙两袋中各任取2个球。

(Ⅰ)若n=3,求取到的4个球全是红球的概率;

(Ⅱ)若取到的4个球中至少有2个红球的概率为 ,求n.

24、(本小题满分12分)

每次抛掷一枚骰子(六个面上分别标以数字

(I)连续抛掷2次,求向上的数不同的概率;

(II)连续抛掷2次,求向上的数之和为6的概率;

(III)连续抛掷5次,求向上的数为奇数恰好出现3次的概率。

25、(本小题满分12分)

某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。

(I)求取6件产品中有1件产品是二等品的概率。

(II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批

产品被用户拒绝的概率。

26、甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.现从甲、乙两袋中各任取2个球.

(Ⅰ)若n=3,求取到的4个球全是红球的概率;

(Ⅱ)若取到的4个球中至少有2个红球的概率为 ,求n.

27、(本小题满分10分)

在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布N(70,100)。已知成绩在90分以上(含90分)的学生有12名。

(Ⅰ)试问此次参赛的学生总数约为多少人?

(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?

可供查阅的(部分)标准正态分布表 (x0)=P(x<x0)

28、(本小题满分12分)

袋中装着标有数字1,2,3,4,5的小球各2个.从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字,求:

(Ⅰ)取出的3个小球上的数字互不相同的概率;

(Ⅱ)随机变量ξ的概率分布和数学期望;

(Ⅲ)计分介于20分到40分之间的概率.

29、(本小题满分13分)

某大厦的一部电梯从底层出发后只能在第18、19、20层可以停靠。若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为 ,用 表示这5位乘客在20层下电梯的人数,求:

(Ⅰ)随即变量 的分布列;

(Ⅱ)随即变量 的期望;

30、(本小题满分12分)

某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组,在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。登山组的职工占参加活动总人数的 ,且该组中,青年人占50%,中年人占40%,老年人占10%。为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本,试确定

(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;

(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。

31、(本小题满分12分)

盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,每张卡片被抽出的可能性都相等,求:

(Ⅰ)抽出的3张卡片上最大的数字是4的概率;

(Ⅱ)抽出的3张中有2张卡片上的数字是3的概率;

(Ⅲ)抽出的3张卡片上的数字互不相同的概率.

32、(本小题满分13分)

甲、乙、丙三人在同一办公室工作,办公室里只有一部电话机,设经该机打进的电话

是打给甲、乙、丙的概率依次为 、 、 .若在一段时间内打进三个电话,且各个电话相互独立.

求:

(Ⅰ)这三个电话是打给同一个人的概率;

(Ⅱ)这三个电话中恰有两个是打给甲的概率

答案放不下了 你在追问一下 把答案发给你

2023全国甲卷文科数学难度

第一空:根据M=lgA-lgA0=lg(1000)-lg(0.001)=3-(-3)=6;

第二空:设9级时最大振幅为A1,5级为A2,则lgA1-lgA0=lg(A1/A0)=9,所以A1/A0=10^9;同理:A2/A0=10^5;则两式相除得:A1/A2=10^4=10000。

不知道你是否明白了?

2007年湖南高考文科数学第7题

2023全国甲卷高考文科数学试题不难。

甲卷数学2023文科总体来说不难(相对于绝大多数中等生来说)。本身文科的数学就相对理科数学简单一点。如果是妥妥的学霸,什么样的试题都不难,如果是学渣,什么样的试题都难

从历年纵向比较,全国甲卷高考文科数学试题难度变化相差不大,但阅读量和计算量确实相较于往年有所增加,全国甲卷高考文科数学试卷设置上大都以常见的备考题型为主,选填难度不大,但个别题目有较大的计算量。

据某位考生说今年高考全国甲卷的数学题目,我愿意称之为全国最难的一张试卷,它可以难到什么地步?让你从头到尾,几乎找不到会做的题目。我平时的数学成绩,是我引以为傲的一个科目,经常能考个120分左右,今年可能都不一定能考够80分。

2023文科上一本最低需要多少分呢?

2023大部分地区文科一本分数线在530左右。文科生的一本上线率大概是5%左右,在所有的文科生中,你需要考到全省前5%,才可以被一本录取。

各省高考政策不同,录取批次不同,分数线差异很大。大部分地区文科一本分数线在530左右,合并本科录取批次以及个别发展中地区,一本分数线文科在480左右。

总之,一本分数线各省情况不同,甚至有很大差异,同学们要想对自己所在地区一本文理科分数线有更为准确的预估,可参考当地近几年分数线进行预测,当然前提是当地政策没有改变,比如本科录取批次近几年没有合并,高考试卷最好也没有换过,同时尽量在高考报名人数或招生计划上也不要有太大的变化,这样才能更准确的预估分数线。

高考文科数学概率题必须用列出所有情况才能得分?

49米时是0.01没错,但这里考虑的可能性是指当水位高于该米数时会出现的概率。所以>=49米时,应该是49米那一点右边总的概率,应该是0.02;而50米那一点之后的总概率是0.01。.

我不知道你是哪里的 可能各个地方的要求不一样

我是山东的文科生 我们老师就要求一定要列出所有的基本事件 这是文科概率题必须的步骤 否则不得分 老师还讲说排列组合文科概率考试不可以用 但可以用来检验对错

个人经验 仅供参考

文章标签: # 概率 # 满分 # 12