您现在的位置是: 首页 > 分数线 分数线

全国高考2卷数学文科,高考2卷数学文科答案解析

tamoadmin 2024-05-25 人已围观

简介1.高考数学试卷2022(对口高考数学试卷2022)2.新高考二卷数学2022答案3.2020年贵州高考数学难不难,高考数学答案解析(文理科)4.高三数学试卷分析5.09浙江高考浙江文科数学答案6.2018年高二文科数学期末试卷及答案 对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。 高考文科

1.高考数学试卷2022(对口高考数学试卷2022)

2.新高考二卷数学2022答案

3.2020年贵州高考数学难不难,高考数学答案解析(文理科)

4.高三数学试卷分析

5.09浙江高考浙江文科数学答案

6.2018年高二文科数学期末试卷及答案

全国高考2卷数学文科,高考2卷数学文科答案解析

对于文科生来说,数学是一门比较特别的学科,高考要想数学分数高,必须掌握必考知识点。下面是我为大家整理的高考文科数学知识点,希望对大家有所帮助。

高考文科数学知识点

第一,函数与导数

主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

第二,平面向量与三角函数、三角变换及其应用

这一部分是高考的重点但不是难点,主要出一些基础题或中档题。

第三,数列及其应用

这部分是高考的重点而且是难点,主要出一些综合题。

第四,不等式

主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。

第五,概率和统计

这部分和我们的生活联系比较大,属应用题。

第六,空间位置关系的定性与定量分析

主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。

第七,解析几何

高考的难点,运算量大,一般含参数。

文科数学高频必考考点

第一部分:选择与填空

1.集合的基本运算(含新定集合中的运算,强调集合中元素的互异性);

2.常用逻辑用语(充要条件,全称量词与存在量词的判定);

3.函数的概念与性质(奇偶性、对称性、单调性、周期性、值域最大值最小值);

4.幂、指、对函数式运算及图像和性质

5.函数的零点、函数与方程的迁移变化(通常用反客为主法及数形结合思想);

6.空间体的三视图及其还原图的表面积和体积;

7.空间中点、线、面之间的位置关系、空间角的计算、球与多面体外接或内切相关问题;

8.直线的斜率、倾斜角的确定;直线与圆的位置关系,点线距离公式的应用;

9.算法初步(认知框图及其功能,根据所给信息,几何数列相关知识处理问题);

10.古典概型,几何概型理科:排列与组合、二项式定理、正态分布、统计案例、回归直线方程、独立性检验;文科:总体估计、茎叶图、频率分布直方图;

11.三角恒等变形(切化弦、升降幂、辅助角公式);三角求值、三角函数图像与性质;

12.向量数量积、坐标运算、向量的几何意义的应用;

13.正余弦定理应用及解三角形;

14.等差、等比数列的性质应用、能应用简单的地推公式求其通项、求项数、求和;

15.线性规划的应用;会求目标函数;

16.圆锥曲线的性质应用(特别是会求离心率);

17.导数的几何意义及运算、定积分简单求法

18.复数的概念、四则运算及几何意义;

19.抽象函数的识别与应用;

第二部分:解答题

第17题:向量与三角交汇问题,解三角形,正余弦定理的实际应用;

第18题:(文)概率与统计(概率与统计相结合型)

(理)离散型随机变量的概率分布列及其数字特征;

第19题:立体几何

①证线面平行垂直;面与面平行垂直

②求空间中角(理科特别是二面角的求法)

③求距离(理科:动态性)空间体体积;

第20题:解析几何(注重思维能力与技巧,减少计算量)

①求曲线轨迹方程(用定义或待定系数法)

②直线与圆锥曲线的关系(灵活运用点差法和弦长公式)

③求定点、定值、最值,求参数取值的问题;

第21题:函数与导数的综合应用

这是一道典型应用知识网络的交汇点设计的试题,是考查考生解题能力和文科数学素质为目标的压轴题。

主要考查:分类讨论思想;化归、转化、迁移思想;整体代换、分与合思想

一般设计三问:

①求待定系数,利用求导讨论确定函数的单调性;

②求参变数取值或函数的最值;

③探究性问题或证不等式恒成立问题。

第22题:三选一:

(1)几何证明主要考查三角形相似,圆的切割线定理,证明成比例,求角度,求长度;利用射影定理解决圆中计算和证明问题是历年高考题的 热点 ;

(2)坐标系与参数方程,主要抓两点:参数方程、极坐标方程互化为普通方程;有参数、极坐标方程求解曲线的基本量。这类题,思路清晰,难度不大,抓基础,不做难题。

(3)不等式选讲:绝对值不等式与函数结合型。设计上为:①解含有参变数关于x的不等式;②求解不等式恒成立时参变数的取值;③证明不等式(利用均值定理、放缩法等)。

2018高考文科数学知识点:高中数学知识点 总结

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)

必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角

这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分

2、直线方程:高考时不单独命题,易和圆锥曲线结合命题

3、圆方程:

必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分

必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查

2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分

必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

高考文科数学知识点总结

乘法与因式分解

a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b)(a2+ab+b2)

三角不等式

|a+b|≤|a|+|b|

|a-b|≤|a|+|b|

|a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解

-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a

根与系数的关系

X1+X2=-b/aX1__X2=c/a注:韦达定理

判别式

b2-4a=0注:方程有相等的两实根

b2-4ac>0注:方程有一个实根

b2-4ac<0注:方程有共轭复数根

三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB

sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB

cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)

tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)

ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)

ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)

sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)

cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))

tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))

ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化积公式

2sinAcosB=sin(A+B)+sin(A-B)

2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)

-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2

cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB

tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB

-ctgA+ctgBsin(A+B)/sinAsinB

某些数列前n项和公式

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2

1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1)

12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4

1__2+2__3+3__4+4__5+5__6+6__7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理:a/sinA=b/sinB=c/sinC=2R

注:其中R表示三角形的外接圆半径

余弦定理:b2=a2+c2-2accosB

注:角B是边a和边c的夹角

高考文科数学知识点总结相关 文章 :

★ 2022北京卷高考文科数学试题及答案解析

★ 2022全国新高考Ⅰ卷文科数学试题及答案解析

★ 2022年全国新高考1卷数学试题及答案解析

★ 2022全国新高考Ⅱ卷文科数学试题及答案解析

★ 高中导数知识点总结大全

★ 山东2022高考文科数学试题及答案解析

★ 湖北2022高考文科数学试题及答案解析

★ 2022河北高考文科数学试题及答案解析

★ 高中文科数学复习指导与注意事项

★ 2017高考数学三角函数知识点总结

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();

高考数学试卷2022(对口高考数学试卷2022)

想必很多同学高考结束后的第一件事情就是预估自己的分数,而要预估分数就需要答案,我就在本文为大家带来2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)。

一、2021年全国高考数学试题及答案(全国一卷、二卷、三卷完整版)

2021年高考即将开始,关于2021年高考全国一卷、二卷、三卷数学试题及答案,高考100网将在试题及答案正式公布以后,第一时间进行更新,请大家持续关注高考100网。?

二、志愿填报参考文章

2021年河北450分理科能上什么大学?附河北450分的公办二本名单

女生学医,学什么专业比较好:医学方面女生学什么专业最好?(2021年参考)

学大数据专业后悔死了?大数据专业有哪些学校?

三、2020年全国一卷数学试卷及答案解析

文科

文科参考答案

理科

理科参考答案

四、2020年全国二卷数学试卷及答案解析

文科

文科参考答案

理科

理科参考答案

五、2020年全国三卷数学试卷及答案解析

文科

文科参考答案

理科

理科参考答案

新高考二卷数学2022答案

今天小编辑给各位分享高考数学试卷2022的知识,其中也会对对口高考数学试卷2022分析解答,如果能解决你想了解的问题,关注本站哦。

2022年全国乙卷高考数学试题答案

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的,以下是我整理的2022年全国乙卷高考数学试题答案,希望可以提供给大家进行参考和借鉴。

2022年全国乙卷高考数学试题答案

全面认识你自己

认识自己是职业定位、自我定位的前提,也是科学选择专业的关键。

首先,对自我的认识来源于自我评价。考生对自己兴趣、性格、天赋的认知是志愿选择的一个重要依据。但需要注意的是,我们的教育一直专注于学生智力的培养,而忽视学生自身的认知和个性的发展,可能造成学生对自我认识的不足和偏差。如,一些考生完全有能力选择更好的大学、更有挑战性的专业,但可能因为对自我评价过低而错失机会。

其次是他人评价。特别是家长,班主任老师的评价相对全面。但是这种评价可能带有浓厚个人喜好的色彩,有失客观,而且对学生内在价值动力、天赋能力等极其重要的内在心理特质缺乏真正的了解,因此,在参考他人意见的时候需要谨慎对待。

最后是心理测评,即通过心理测评来指导高考志愿填报。在国内,高考志愿测评是一个新鲜事物,其测评的结果较为全面和科学,渐渐地为更多的家长和教育机构所接受。考生如果希望在志愿填报时就对今后的长期发展有个较好的规划,可以尝试选择相关的测试系统帮助分析,进而对专业的选择给出一定的指导建议。

高考志愿填报无疑对考生的一生影响深远,因此,考生在专业选择时应该特别注意考虑的全面性--专业是否是自己兴趣喜欢的?专业是否自己性格适合的?专业是否是自己天赋能力擅长的?只有在三者之间找到一个最佳的结合点,考生才能在自己的人生路上迈出正确、关键的一步。

与此同时,尽管高考志愿测评技术在国内发展较快,但哪怕是一些较权威的专业测评,也有其局限性,他们只能通过网络平台为考生提供测评服务,学生只有登陆其网站才能参加测评,这使得不少上网条件受到限制的考生难以通过测试对自己进行分析。

此外,市面上不少测评软件仅仅只是从兴趣的维度对考生进行考察,相对于性格和天赋,兴趣的稳定性欠佳,这样得出的结果对考生就没有太大的指导意义。

在此,也提醒考生,选择测评软件时,需要先对测评体系有个系统的了解。

考生个人特征情况

考生个人特征如兴趣、特长、志向、能力、职业价值观等。

兴趣——兴趣是指一个人力求认识、掌握某种事物并经常参与该种活动的心理倾向。据有关专家研究表明,如果一个人对某种工作有兴趣,他能发挥其全部才能的80%~90%,并且能长时间保持高效率而不知疲惫。相反,如果他对某种工作没有兴趣,则只能发挥全部才能的20%~30%,还容易精疲力竭。而具体在进行专业选择时,对于自己兴趣的考查,主要看当前潜在的职业兴趣和对各门学科的学科兴趣。

特长——选择了符合自己特长的专业,无疑在未来的学习、工作中可以扬长避短,充分发挥自己的聪明才智。俗话说,最了解自己的还是自己。每个考生部应认真做一次自我分析,看看到底最喜欢哪一门学科?是动手能力强,还是更擅长动脑?表象思维与逻辑思维能力哪一个更有优势?组织管理能力、艺术修养、口头与书面表达能力,在同学中处于什么地位?等等。这些都是你选择志愿的参考因素。

志向——各人的志向、理想是激发自己奋发努力的动力之一,也是成就事业不可缺少的条件之一。

能力——能力可以分为一般能力和特殊能力。一般能力包括观察力、记忆力、注意力、思维力、想像力等。具体在选择专业填报志愿时,考生需要知道的是,有些专业是需要考生具备一些特殊能力才能报考和学习的,如美术、音乐、等。但是就其他大部分专业来说,对学生能力的要求是不超出一般范围的。另外,在学生所处年龄这个阶段,可以说,他们能力发展的空间是相当大的,尤其进入大学阶段后,随着眼界的扩大,知识的扩展、锻炼能力机会的增加,他们的能力会不断得到提高,所以,在专业选择时,虽然能力是一个需要考虑的因素,但是不宜作为一个绝对化的考虑因素。

职业价值观;一般说来,职业价值观与理想基本是一致的,但无论是以什么专业作为理想专业的人,职业价值体系中均应以充分体现自己的兴趣,发挥个人能力及个性为第一位,然后,再考虑一些外在因素,如这个专业将来对应职业的工资、社会地位、稳定性等。在进行专业选择时,考生家庭中的成员最好就这个方面的问题进行认真的讨论,弄清个人和家庭的职业价值观是什么,再作出专业和将来的职业选择。

2022年全国乙卷高考数学试题答案相关文章:

★2022高考全国乙卷试题及答案

★2022高考理科数学乙卷试题解析

★2022年全国乙卷高考理科数学

★2022年全国乙卷文科数学卷真题公布

★2022年高考数学试题及答案

★2022年全国乙卷高考数学真题及答案

★2022年全国理科数学卷试题答案及解析

★2022全国Ⅰ卷高考数学试题及参考答案一览

★2022年英语全国乙卷试题及答案

★2022年高考乙卷数学真题试卷

2022新高考全国卷的数学题是什么难度?有多少基础分?

随着高考的结束,很多考生都在抱怨本次高考中的数学考试难度非常之大,而很多考生说这次考试想拿数学满分是不可能的事情。而根据权威部门所发布的消息,2022年新高考全国卷的数学题处于中上等难度,相比往年的高考难度增加了一些,而这样做的目的就是加大考生与考生之间的竞争。而高考中的数学题的基础分大概在30~50分之间,因为这个基础分是最基本的一些题型,只要考生在上课期间认真听课,认真复习这些分都能拿满。

一、2022年新高考全国卷的数学题处于中上等难度

根据相关媒体报道,本次出题是由全国的高考专家库出题的,而这次高考数学题的难度为中上等,要比往年的高考难度增加了许多。而本年度的高考很多考生都在反映数学题非常难,都是一些在课程上没有见过的题型,而这又从侧面反映了学校在教课期间并没有对数学题的一些知识内容进行扩展,而只是把重点放在了书本上,所以从这一点上考生们没有接触到新型题型,自然会感觉很难。二、基础分大概在30~50分

一般来讲,全国数学题考试卷总分在150分,而基础分都会设置在30分到50分左右,而根据专家透露的消息,2022年的高考基础分在30分到50分左右,这些题型在课本上都是能见得到的,只要考生在上课期间认真听讲,认真做笔记那么是完全可以拿到这些分数的,因为这是最基础的一种题型。三、总结

总的来说,本年度的高考确实很难,甚至把深圳中学的一个学霸都给考哭了,而很多数学教师在做数学高考试卷的时候都感觉很难,通常要花费两个小时以上才能把所有题型做完,并且还拿不到满分。而还有考生反映往年的高考都有人保证数学成绩能拿满分,而今年的考生则反映没有人敢保证敢拿数学成绩的满分,这就直接表明本年度高考数学这个难度是很难的。

2022年高考数学试题有哪些新变化?

2022年高考数学落实立德树人根本任务,促进学生德智体美劳全面发展,体现高考改革的要求。试卷突出数学学科特点,强化基础考查,突出关键能力,加强教考衔接,服务“双减”政策实施,助力基础教育提质增效。

变化一、设置现实情境,发挥育人作用

高考数学命题坚持思想性与科学性的统一,发挥数学应用广泛、联系实际的学科特点,设置真实情境,命制具有教育意义的试题,发挥数学考试的教育功能和引导作用。

变化二、设置优秀传统文化情境

数学试卷以中华优秀传统文化为试题情境材料,让学生领略中华民族的智慧和数学研究成果,进一步树立民族自信心和自豪感,培育爱国主义情感。如新高考Ⅱ卷第3题以中国古代建筑中的举架结构为背景,考查学生综合应用等差数列、解析几何、三角函数等基础知识解决实际问题的能力。全国甲卷理科第8题取材于我国古代科学家沈括的杰作《梦溪笔谈》,以沈括研究的圆弧长计算方法“会圆术”为背景,让学生直观感受我国古代科学家探究问题和解决问题的过程,引发学生的学习兴趣。

变化三、设置社会经济发展情境

数学科高考以我国的社会经济发展、生产生活实际为情境素材设置试题。如新高考Ⅰ卷第4题以我国的重大建设成就“南水北调”工程为背景,考查学生的空间想象、运算求解能力,试题引导学生关注社会主义建设的成果,增强社会责任感。全国甲卷文、理科第2题以社区环境建设中的“垃圾分类”为背景考查学生的数据分析能力。全国乙卷文、理科第19题以生态环境建设为背景材料,考查学生应用统计的基本知识和基础方法解决实际问题的能力,对数据处理与数学运算素养也作了相应的考查。

高考数学试卷2022难吗

难。

全国卷,和新高考卷的高考学子,都觉得2022年高考数学试卷还是挺难的。不过难的话,其他人也不会太容易,换个心态,大家都很难,心理就会平衡一些了。

全国卷和新高考卷的高考学子们,考过了就把心态调整好,积极的面对接下来的考试,才是最正确的做法。心态好,可能运气就会好,接下来的考试就可能会发挥的更好。

考生四:王少波,重庆考生

咳,难啊,一点都不简单。我还听被人数,新高考卷的数学题目简单一些,这真是在胡扯八道。这张试卷,从选择题道填空题,再到大题,都比平时的难很多。考完数学之后,我们班好多考生都觉得难,包括我们的数学老师,都说这试卷,出的有点难为人了。今年新高考卷的考生,也太难了,我都听说全国卷的简单一些。

你如何评价2022新高考数学试卷,今年题目难度如何,有哪些变化?

今年的高考数学居然可以说是地狱级别的难度,而且这次的试卷让很多人都非常的崩溃,也让很多人觉得这种题目根本就让人看不下去,让人非常的愤怒。题型发生了变化,出题的模式也发生了变化,对于一些题目的题型发生了改变,而且还引用了一些实时的新闻,能够通过一些新闻来增加答题的具体性,也能够吸引人们的关注。

2022新高考全国一卷数学试卷及答案解析

为了帮助大家全面了解2022年新高考全国一卷数学卷,以下是我整理的2022新高考全国一卷数学试卷及答案解析参考,欢迎大家借鉴与参考!

2022新高考全国一卷数学试卷

2022新高考全国一卷数学试卷答案解析参考

高考怎样填志愿

1、选择哪个学校

填报的几个志愿中要注意梯度,尤其是分数正好卡线的同学。不要一味追求名校,将所有志愿都选择同一层次的学校,更忌全部志愿扎堆名校。

2、选择什么专业

选择专业最主要的是结合自己的兴趣和基础,或者毕业后想从事的工作有特殊要求的专业,比如想当医生,就要选择相对应的专业。

3、提前了解各个学校的情况

在填报志愿之前,提前将各个学校的简章和招生计划等一系列的情况了解清楚,看自己的情况是否与该校复合,这样才能更好的去填写志愿。

服从调剂意味着什么

1、增加了一次录取机会

在平行志愿投档录取模式下,实行“排位优先,一轮投档”,每个考生只有一次被投档的机会。

如果考生所填报的专业志愿都未能被录取,选择服从专业调剂则可能被调至院校专业组内还没有录取满额的专业。而如果考生不服从专业调剂,那么一旦被退档,只能等待补录,或参加高职自招。

2、服从调剂,不一定会被调剂到其他专业

从录取的稳妥性上来说,服从专业调剂对于考生是利大于弊的。并不是说选择了专业调剂,就不会被所填报的专业录取,直接被调剂到其他专业。

如果考生的分数足够进入所填报专业时,就会被录取到所填报专业,服从专业调剂就没有派上用场。只有当考生所报专业全都录取额满,才会进入调剂程序。

3、专业调剂会调到哪里去?

专业服从调剂,是指在所填报的院校专业组内进行调剂。一般情况下,专业服从的范围是,考生当年填报的招生院校专业组,在本次招生计划录取中未满额的专业。

高考之后可以去哪玩

1、云南

云南是一个温和的城市,也是许多人向往的地方。可以在丽江感受古城魅力、在大理感受风花雪月、在香格里拉体验传说中的女儿国,一个四季如春的地方很适合放松心情。

云南香格里拉,感受真正的大自然。香格里拉的自然景色是雪山、冰川、峡谷、森林、草甸、湖泊、美丽、明朗、安然、闲逸、悠远、知足、宁静、和谐,是人们美好理想的归宿。在7月到8月间,避开如涌的人群,把自己放逐在自然,听风的呼唤,听鸟的鸣叫,听流水的声音,聆听自己的心声,这是真正的香格里拉。

2、杭州

“上有天堂,下有苏杭”,杭州是我国宜居城市之一,到西湖边上走一走,品尝东坡肉、干炸响铃、西湖醋鱼

3、重庆

说到重庆就会想到“山城”,说起来重庆也是一个神奇的城市,你以为你在以为你在地面,其实你在地下。到重庆看穿越房屋的轻轨、看斑斓的城市,还能吃上麻辣辣的火锅。

4、厦门

厦门是一个小资城市,尤其是鼓浪屿,充满文艺气息,也适合情侣度假。而且因为靠海,厦门还有非常多便宜又好吃的海鲜

5、西藏

西藏是一个神圣又神秘的地方,如果有机会,人生中一定要去一次。到布达拉宫、纳木错体验纯净的心灵,到珠穆朗玛峰挑战高峰,即使是高原反应也是值得留念的体验。

6、九寨沟

九寨沟以绝天下的原始、神秘而闻名。自然景色兼有湖泊、瀑布、雪山、森林之美,有“童话世界”的美誉。这时雪峰玉立,青山流水,交相辉映。这时的瀑布、溪流更是迷人,如飞珠撒玉,异常雄伟秀丽。其中有千年古木,奇花异草,四时变化,色彩纷呈,倒影斑斓,气象万千,是夏季消暑的理想之地。

7、桂林

“桂林山水甲天下”夸的就是桂林的漓江山水。漓江两岸风景如画,当你泛着竹排漫游漓江时,肯定会感觉自己置身于360的泼墨山水中,好山好水目不暇接。另外,桂林的阳朔可是一个魅力十足的旅游热点。在阳朔上至七八十的老人,下至七八岁的小孩都或多或少能说上几句流利的英语,要不是周围的建筑风格提醒你这是中国境内,没准你还以为自己魂游到哪个“鬼”地方了呢。西街的氛围有点像北京的三里屯,那里的酒吧融合了中西两种文化的精华,在西街呆着就算不喝酒只喝茶,也能体会什么叫享受。

2022新高考全国一卷数学试卷及答案解析相关文章:

★2022高考北京卷数学真题及答案解析

★2022高考全国乙卷试题及答案

★2022全国甲卷高考数学文科试卷及答案解析

★2022高考甲卷数学真题试卷及答案

★2022年北京高考数学试卷

★2022高考全国甲卷数学试题及答案

★2022全国新高考I卷语文试题及答案

★2022全国新高考Ⅰ卷英语试题及答案解析

★2022年全国新高考II卷数学真题及答案

★2022北京卷高考文科数学试题及答案解析

2020年贵州高考数学难不难,高考数学答案解析(文理科)

目前可以从以下几个渠道获得答案:

第一,自购教辅资料。市场上很多出版社都会推出针对新高考的数学教材和试题集,这些教材都会包含真题及其答案,考生可以通过购买这些资料来获取答案。

第二,网络搜索。当前互联网发达,考生可以通过搜索引擎在网上搜索到很多试卷及答案,但是需要注意的是,这些答案的准确性不能保证,需要慎重选择。

第三,寻找考前辅导班。一些有资质的考前辅导机构会提供真题解析及其答案,考生可以通过参加这些辅导班来获取答案。

高三数学试卷分析

数学试题点评

数学:难度与去年持平

在个别地方有所创新,更加贴近教材

6月7日下午,高考数学科目考试结束,西北师大附中教师李晓霞认为,数学文科试卷难度大体上与去年持平,稳中求变,有利于人才选拔。兰大附中教师李虎认为,数学理科试卷较去年相比,基本上保持稳定,在个别地方有所创新,更加贴近教材。

数学(文科)

结构和考查内容相对稳定,重点考查主干知识

西北师大附中李晓霞

高考数学新课标全国试卷2(文科),结构和考查内容相对稳定,重点考查主干知识,以《课程标准》、《考试大纲》为依据,试卷贴近中学教学实际,紧扣教材,注重基础,注重对数学思想与方法的考查,如数形结合思想、函数与方程思想、转化思想及分类讨论思想等。体现了数学的基础性、应用性和工具性的学科特色。试卷从多视角、多维度、多层次考查考生数学思维品质、数学素养和学习潜能。

考查内容涵盖了函数、数列、不等式、立体几何、解析几何、概率统计等高中数学模块,对于支撑学科知识体系的主干知识点,如函数的性质、导数的应用、空间几何体、圆锥曲线、概率、统计的考查保持了较高的比例,对于其他非主干知识点也注意适度考查,重点考查算法、三视图等知识点。纵观全卷,今年的数学试题,选择题简洁平稳,区分度好,填空题难度适中,解答题层次分明。整套试题衔接有序,稳中求变,有利于选拔。

数学(理科)

突出数学课程改革,更加体现新课程特点

兰大附中李虎

今年的高考试题是甘肃省新课标下的第三年高考,较前两年高考试题相比,今年整套试卷更加突出了数学课程的改革,更加体现了新课程的特点。试题严格按照注重通性通法,淡化特殊技巧的命题原则,紧扣教学大纲,对推进数学新课程改革起着积极作用。

1.试题总体看,高频考点依然在试卷中占有较高比例。比如集合的关系与运算,复数的概念与运算,等差等比数列的通项公式,性质,求和公式等,分段函数,函数的图像,解斜三角形,概率与统计,三视图,程序与框图,导数的几何意义与应用,线性规划问题,圆锥曲线的定义,球体的表面积与体积,平面向量,直线与圆的方程,二项式定理,三角函数求最值,函数的性质,已知数列递推公式求通项公式,不等式恒成立等这些核心考点,在今年的考题中都有所考查。这部分知识的题目应该都是反复练习过的,对于绝大多数学生都是可以拿下的。

2.试题与去年相比,基本上保持稳定,在个别地方有所创新,更加贴近教材。第17题即第一个解答题是解斜三角形的问题,今年考三角,这是和新课标数学命题规律完全吻合的,应该说是在预料当中。相比去年的数列题学生应该更容易上手一些,但学生如果不知道三角形内角平分线性质定理解决第一问就要麻烦一些,这个性质这几年经常考,今年再次出现也在情理之中。对于18题概率统计题,保持去年的命题风格,以统计为背景考查概率,以统计为背景的概率题是近几年新课程命题概率题的特点,这也是要落实高考数学七种能力中的对数据处理能力的必选题型。立体几何题是以长方体为载体定性和定量考查线面关系,在设问上第一问较以往有所变化,但考查的本质是一样的,第二问还是经常考的线面角。

3.试题很好地把握了区分度。由去年一题压轴调整为由两题压轴。去年的解析几何题目较为常规,数学基础扎实的学生都没有问题,但今年的第一问就增大了运算量。最后的压轴题导数和去年比就简单多了,今年这个题是一个很常规的题目,应该是反复训练过的题型,第一问单调性问题,第二问最值问题,数学思维好的学生是能拿满分的。

09浙江高考浙江文科数学答案

高三数学试卷分析1

 一、试卷特点分析

 1.覆盖知识面广,重点考查主干

 除了概率与统计以外,试题全面覆盖教材中知识模块,知识条目的覆盖率在50%左右。除主干知识重点考查外,已广泛涉及复数、集合、三视图,程序框图、逻辑与推理、排列组合、线性规划、平面向量等。还注重了数学的现实情境和历史文化,如理科第7、9、14、18题,文科第5、19题。

 试卷穾出学科的主干内容:函数与导数、三角、数列、立体几何、解析几何以及不等式在试卷中占有较高的比例,整体结构合理,达到必要的考查深度。

 试卷还注意知识交汇的考查,如理科第5、14题 ,文科第7、11、19题。

 2.注重思想方法,突显能力素养

 七个基本数学思想在试卷中都有涉及。解题方法有坐标法、三角法、向量法、待定系数法、代入法、消元法、配方法、换元法等。

 六大数学核心素养:运算求解能力在绝大多数题目中都有体现,逻辑推理也有鲜明体现,直观想象体现在用数形结合的题目中,数学建模与数据分析是对现实问题进行抽象,用数学语言表达和解决问题的过程。同时也自然考查了阅读理解和知识迁移能力,也关注到数学的应用。

 3.贴近教材提高,增大思维难度

 试卷的知识构成、题型构成严格按照考纲命制,有近80%的题目体现教材的基础知识、基本技能与基本方法。选填题多数题目直接来自教材的基本概念、基本方法、基本运算或只做简单的变形,起点不高,坡度不陡,大多只涉及两三个知识条目,仅进行两三步演算,切合多数学生实际,虽然后两三题加大了思维量和运算量,但还属中档偏难一点。选择题思维量较大的理科第10、11、12题,文科第8、11、12题。填空题思维量较大的理科第15、16题,文科第15、16题。解答题思维量与运算量较大的理科第18(2)、20、21题,文科第19(2)、20、21题。

 4.体现目标层次,文理差异互补

 每类题型易中难搭配,从易到难。

 文理科试卷除了四个小题(文、理第3题,文10理6,文理第13题,文14理4)及二选一的第22题完全相同外,其他题目都不相同。实现差异主要是撤换文科不考内容(如排列组合),降低题目难度(姐妹题)及调换前后位置三种形式。对理科少考的指数函数问题,文科多考一点。

 5.重视数学文化,呈现创新元素

 新考纲突出了增加数学文化内容,理科试卷在考查数学文化方面做了一些努力和尝试。通过对材料的创新设计使考生深刻地认识到中华民族优秀传统文化中注重算法的特点,为试卷注入了新的活力。

 试题中出现中国古代求解一类大衍问题的方法。大衍问题源于《孙子算经》中的“物不知数”问题:“今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”这是属于现代数论中求解一次同余式方程组问题。宋代数学家秦九韶在《数书九章》(1247年成书)中对此类问题的解法作了系统的论述,并称之为大衍求一术。德国数学家C.F.高斯是在1801年才建立起同余理论的,大衍求一术反映了中国古代数学的高度成就。在我国古代劳动人民中,长期流传着“隔墙算”、“剪管术”、“秦王暗点兵”等数学游戏。有一首“孙子歌”,甚至远渡重洋,输入日本:

 “三人同行七十稀,五树梅花廿一枝,

 七子团圆正半月,除百零五便得知。”

 这些饶有趣味的数学游戏,以各种不同形式,介绍世界闻名的“孙子问题”的解法,通俗地反映了中国古代数学一项卓越的成就。"孙子问题”在现代数论中是一个一次同余问题,它最早出现在我国公元四世纪的数学著作《孙子算经》中。《孙子算经》卷下“物不知数”题说:有物不知其数,三个一数余二,五个一数余三,七个一数又余二,问该物总数几何?显然,这相当于求不定方程组N=3x+2,N=5y+3,N=7z+2的正整数解N,或用现代数论符号表示,等价于解下列的一次同余组:N 2(mod3) 3(mod5) 2(mod7)②《孙子算经》所给答案是N=23。由于孙子问题数据比较简单,这个答数通过试算也可以得到。但是《孙子算经》并不是这样做的。“物不知数”题的术文指出解题的方法:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。将诸乘积相加,然后减去一百零五的倍数。列成算式就是:

 N=70×2+21×3+15×2-2×105。

 这里105是模数3、5、7的最小公倍数,容易看出,《孙子算经》给出的是符合条件的最小正整数。对于一般余数的情形,《孙子算经》术文指出,只要把上述算法中的余数2、3、2分别换成新的余数就行了。以R1、R2、R3表示这些余数,那么《孙子算经》相当于给出公式

 N=70×R1+21×R2+15×R3-P×105(p是整数)。

 试卷通过设置综合性、开放性、探索性试题,具有情境创新、情境多样、思维灵活的特点,既考查了学生的基本知识、基本技能,又考查了学生基本思想、基本体验活动,穾出考查学生的创新能力。

 二、对下一阶段精准备考,高效复习的建议

 第一:进一步夯实基础

 做到百分之百的掌握,一清二楚的理解,准确无误的应用,融汇贯通的领悟。

 第二:更重视通性通法

 回归朴素本原,淡化特殊技巧,掌握应用概念、性质、定理等解决问题的基本方法、基本技能,也就是应用数学思想分析问题、理解问题、把握问题、探寻解题方法的基本思维方法。

 第三:最重要的是形成数学核心素养

 以基本能力加综合能力的培养为导向,统领三基的落实,在知识深化理解、应用中提升能力,形成素荞。

 第四:再强调回归教材

 对教材的例习题、相关结论要熟悉,有的结论虽不能作为定理公式应用,但可以启发思路,简化思维过程。

 第五:特穾出自牫解决问题的"独立性"

 面对试题需要考生自我分析问题、自我判断、自我选择方法、遇到困难自我突围。这就要求学生具有独立思考的能力、选择简捷解题方法的辨别能力、逻辑严谨的表达能力,判断结论答案合理正确的判断能力,而这些能力需在平时的解题过程中学习、训练,在教师引导下的自我反思感悟,有了自已的认识与体验,从而真正做到精准备考、高效复习。

高三数学试卷分析2

 选择题

 本次西城区二模考试的选择题排布如下:1、集合,2、向量,3、函数值域,4、抛物线,5、不等式与逻辑用语,6、线性规划,7、三视图,8、函数参数的取值范围。其中第5题很多学生以前应该做过。这些题目基本上就是以前高频问题进行的简单改编。第8题,需要学生对于特殊函数、不等式、及范围问题的解题技巧能够综合掌握。当然,对学生而言,必须要首先把基本题目做好,如果里面出现问题,比如第4题不熟悉抛物线的焦准距与参数的关系,第7题三视图还原还有问题等,则需加以重点强化。

 填空题

 填空题考察的内容排布如下:9、复数,10、程序框图,11、解三角形,12、直线和圆,13、分段函数,14、计数原理。

 第9题考查了“共轭”的概念,帮助学生们进一步检查知识掌握的完整性。第12题,涉及到“对称”的概念,学生们需要抓住“对称”这个条件对应的代数转化。13题分段函数,一定要熟练掌握数形结合的分析方法,注意填空题有可能会有多解。14题是一个篇幅比较大的题目,一方面,考察学生的阅读和关键数据提炼能力,另外,需要学生的逻辑思维比较清晰,必要时也可画图辅助分析。此外,学生能够有良好的心理素质、足够的信心去处理题目也是必要的。实际上题目并不难。

 解答题

 大题方面,15题考查的是一个正切函数,在三角这个模块的高考考察中出现频次要低一些,学生需注意“锐角”条件及规范的解答过程。16题的统计概率,题材为“餐厅满意度调查”,里面有直方图和频数分布表,该图是学生平时训练比较多的模式,理解难度比一模要简单一些,问法也较一模简单,多数学生可以做好。17题的`混合数列求和是最简单的模式,一个等差数列加上一个等比数列,构成一个新的数列,只需要注意审题,第二问的情况里面,第一问里的条件不成立。18题立体几何,包括垂直、平行的证明,以及一个是否存在类的问题,非常经典的构造,考生需注意解答过程中书写规范,以及加快分析速度节约解题时间。

 最后说一下经常做压轴大题的导数与圆锥。今年西城二模导数为19题,圆锥作为最后一题。从考法上来说,19题的导数模型比较复杂,有分式、有对数,第二小问的证明“极小值大于极大值”,与以往相比具有一定新颖性,而证明题对学生也具有相当的挑战,很多学生从思路到过程平时练得都比较少。二模之后,对于基本知识掌握到一定程度的学生而言,需要着重强化证明题。

 第20题,三个小问分别是标准方程、面积最值,线段大小关系判断。本题是经典圆锥曲线构造,分析难度一般低于导数最为最后一题的情形,但对考生数学量的表达能力与计算能力的要求会比较高。在最后的阶段,学生们需要再次巩固计算能力,保持手感,以应对高考中可能出现的计算量大的问题。

 总体而言,本次西城二模出题比较“稳重”,很好地检验了学生的基本功及应对较热门考察套路的能力。对于水平较高的学生,做好选填大题的压轴题目,能够起到一定的训练效果,同时,注意后期加强证明题的练习,加强答题过程细节的练习,及时总结失分原因并提炼“考前写给自己的最后总结”,注意合理安排时间,寻找对提分“增量”最大的点,加以强化,注意解题时间分配的监测以思考遇到难题时的应对策略。希望考生们,能在最后一个月的高考冲刺中,抓住最后可以强化的点,再做出一些突破,并调整好状态,在高考中考出理想成绩。

2018年高二文科数学期末试卷及答案

2009年浙江高考文科数学试题和答案

一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设 , , ,则 ( )

A. B. C. D.

1. B 命题意图本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.

解析 对于 ,因此 .

2.“ ”是“ ”的( )

A.充分而不必要条件 B.必要而不充分条件

C.充分必要条件 D.既不充分也不必要条件

2. A 命题意图本小题主要考查了命题的基本关系,题中的设问通过对不等关系的分析,考查了命题的概念和对于命题概念的理解程度.

解析对于“ ” “ ”;反之不一定成立,因此“ ”是“ ”的充分而不必要条件.

3.设 ( 是虚数单位),则 ( )

A. B. C. D.

3.D 命题意图本小题主要考查了复数的运算和复数的概念,以复数的运算为载体,直接考查了对于复数概念和性质的理解程度.

解析对于

4.设 是两个不同的平面, 是一条直线,以下命题正确的是( )

A.若 ,则 B.若 ,则

C.若 ,则 D.若 ,则

4.C 命题意图此题主要考查立体几何的线面、面面的位置关系,通过对平行和垂直的考查,充分调动了立体几何中的基本元素关系.

解析对于A、B、D均可能出现 ,而对于C是正确的.

5.已知向量 , .若向量 满足 , ,则 ( )

A. B. C. D.

5.D 命题意图此题主要考查了平面向量的坐标运算,通过平面向量的平行和垂直关系的考查,很好地体现了平面向量的坐标运算在解决具体问题中的应用.

解析不妨设 ,则 ,对于 ,则有 ;又 ,则有 ,则有

6.已知椭圆 的左焦点为 ,右顶点为 ,点 在椭圆上,且 轴, 直线 交 轴于点 .若 ,则椭圆的离心率是( )

A. B. C. D.

6.D 命题意图对于对解析几何中与平面向量结合的考查,既体现了几何与向量的交汇,也体现了数形结合的巧妙应用.

解析对于椭圆,因为 ,则

7.某程序框图如图所示,该程序运行后输出的 的值是( )

A. B.

C. D.

7.A 命题意图此题考查了程序语言的概念和基本的应用,通过对程序语言的考查,充分体现了数学程序语言中循环语言的关键.

解析对于 ,而对于 ,则 ,后面是 ,不符合条件时输出的 .

8.若函数 ,则下列结论正确的是( )

A. , 在 上是增函数

B. , 在 上是减函数

C. , 是偶函数

D. , 是奇函数

8.C 命题意图此题主要考查了全称量词与存在量词的概念和基础知识,通过对量词的考查结合函数的性质进行了交汇设问.

解析对于 时有 是一个偶函数

9.已知三角形的三边长分别为 ,则它的边与半径为 的圆的公共点个数最多为( )

A. B. C. D.

9.C 命题意图此题很好地考查了平面几何的知识,全面而不失灵活,考查的方法上面的要求平实而不失灵动,既有切线与圆的位置,也有圆的移动

解析对于半径为1的圆有一个位置是正好是三角形的内切圆,此时只有三个交点,对于圆的位置稍一右移或其他的变化,能实现4个交点的情况,但5个以上的交点不能实现.

10.已知 是实数,则函数 的图象不可能是( )

10.D 命题意图此题是一个考查三角函数图象的问题,但考查的知识点因含有参数而丰富,结合图形考查使得所考查的问题形象而富有深度.

解析对于振幅大于1时,三角函数的周期为 ,而D不符合要求,它的振幅大于1,但周期反而大于了 .

非选择题部分(共100分)

注意事项:

1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。

二、填空题:本大题共7小题,每小题4分,共28分。

11.设等比数列 的公比 ,前 项和为 ,则 .

11.15 命题意图此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前 项和的知识联系.

解析对于

12.若某几何体的三视图(单位: )如图所示,则此几何体的体积是 .

12. 18 命题意图此题主要是考查了几何体的三视图,通过三视图的考查充分体现了几何体直观的考查要求,与表面积和体积结合的考查方法.

解析该几何体是由二个长方体组成,下面体积为 ,上面的长方体体积为 ,因此其几何体的体积为18

13.若实数 满足不等式组 则 的最小值是 .

13. 4命题意图此题主要是考查了线性规划中的最值问题,此题的考查既体现了正确画线性区域的要求,也体现了线性目标函数最值求解的要求

解析通过画出其线性规划,可知直线 过点 时,

14.某个容量为 的样本的频率分布直方图如下,则在区间 上的数据的频数为 .

14. 30命题意图此题考查了频率分布直方图,通过设问既考查了设图能力,也考查了运用图表解决实际问题的水平和能力

解析对于在区间 的频率/组距的数值为 ,而总数为100,因此频数为30

15.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如下:

高峰时间段用电价格表 低谷时间段用电价格表

高峰月用电量

(单位:千瓦时) 高峰电价

(单位:元/千瓦时) 低谷月用电量

(单位:千瓦时) 低谷电价

(单位:元/千瓦时)

50及以下的部分 0.568 50及以下的部分 0.288

超过50至200的部分 0.598 超过50至200的部分 0.318

超过200的部分 0.668 超过200的部分 0.388

若某家庭5月份的高峰时间段用电量为 千瓦时,低谷时间段用电量为 千瓦时,

则按这种计费方式该家庭本月应付的电费为 元(用数字作答).

15. 命题意图此题是一个实际应用性问题,通过对实际生活中的电费的计算,既考查了函数的概念,更侧重地考查了分段函数的应用

解析对于应付的电费应分二部分构成,高峰部分为 ;对于低峰部分为 ,二部分之和为

16.设等差数列 的前 项和为 ,则 , , , 成等差数列.类比以上结论有:设等比数列 的前 项积为 ,则 , , , 成等比数列.

16. 命题意图此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力

解析对于等比数列,通过类比,有等比数列 的前 项积为 ,则 , , 成等比数列.

17.有 张卡片,每张卡片上分别标有两个连续的自然数 ,其中 .

从这 张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到

标有 的卡片,则卡片上两个数的各位数字之和为 )不小于 ”为 ,

则 .

17. 命题意图此题是一个排列组合问题,既考查了分析问题,解决问题的能力,更侧重于考查学生便举问题解决实际困难的能力和水平

解析对于大于14的点数的情况通过列举可得有5种情况,即 ,而基本事件有20种,因此

三、解答题:本大题共5小题,共72分。解答应写出文字说明、证明过程或演算步骤。

18.(本题满分14分)在 中,角 所对的边分别为 ,且满足 ,

. (I)求 的面积; (II)若 ,求 的值.

18.解析:(Ⅰ)

又 , ,而 ,所以 ,所以 的面积为:

(Ⅱ)由(Ⅰ)知 ,而 ,所以

所以

19.(本题满分14分)如图, 平面 , , , , 分别为 的中点.(I)证明: 平面 ;(II)求 与平面 所成角的正弦值.

19.(Ⅰ)证明:连接 , 在 中, 分别是 的中点,所以 , 又 ,所以 ,又 平面ACD ,DC 平面ACD, 所以 平面ACD

(Ⅱ)在 中, ,所以

而DC 平面ABC, ,所以 平面ABC

而 平面ABE, 所以平面ABE 平面ABC, 所以 平面ABE

由(Ⅰ)知四边形DCQP是平行四边形,所以

所以 平面ABE, 所以直线AD在平面ABE内的射影是AP,

所以直线AD与平面ABE所成角是

在 中, ,

所以

20.(本题满分14分)设 为数列 的前 项和, , ,其中 是常数.

(I) 求 及 ;

(II)若对于任意的 , , , 成等比数列,求 的值.

20、解析:(Ⅰ)当 ,

( )

经验, ( )式成立,

(Ⅱ) 成等比数列, ,

即 ,整理得: ,

对任意的 成立,

21.(本题满分15分)已知函数 .

(I)若函数 的图象过原点,且在原点处的切线斜率是 ,求 的值;

(II)若函数 在区间 上不单调,求 的取值范围.

解析:(Ⅰ)由题意得

又 ,解得 , 或

(Ⅱ)函数 在区间 不单调,等价于

导函数 在 既能取到大于0的实数,又能取到小于0的实数

即函数 在 上存在零点,根据零点存在定理,有

, 即:

整理得: ,解得

22.(本题满分15分)已知抛物线 : 上一点 到其焦点的距离为 .

(I)求 与 的值;

(II)设抛物线 上一点 的横坐标为 ,过 的直线交 于另一点 ,交 轴于点 ,过点 作 的垂线交 于另一点 .若 是 的切线,求 的最小值.

22.解析(Ⅰ)由抛物线方程得其准线方程: ,根据抛物线定义

点 到焦点的距离等于它到准线的距离,即 ,解得

抛物线方程为: ,将 代入抛物线方程,解得

(Ⅱ)由题意知,过点 的直线 斜率存在且不为0,设其为 。

则 ,当 则 。

联立方程 ,整理得:

即: ,解得 或

,而 , 直线 斜率为

,联立方程

整理得: ,即:

,解得: ,或

而抛物线在点N处切线斜率:

MN是抛物线的切线, , 整理得

,解得 (舍去),或 ,

 不知不觉已到了期末,文科的各位同学数学复习的怎么样,做套题试试吧。下面由我给你带来关于2018年高二文科数学期末试卷及答案,希望对你有帮助!

2018年高二文科数学期末试卷

 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)

 1.已知集合A={x|x2+x-2=0},B={x|ax=1},若A?B=B,则a= (  )

 A.-12或1 B.2或-1 C.-2或1或0 D.-12或1或0

 2.设有函数组:① , ;② , ;③ , ;④ , .其中表示同一个函数的有( ).

 A.①② B.②④ C.①③ D.③④

 3.若 ,则f(-3)的值为(  )

 A.2 B.8 C.18 D.12

 4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为?同族函数?,则函数解析式为y=x2+1,值域为{1,3}的同族函数有(  )

 A.1个 B.2个 C.3个 D.4个

 5.下列函数中,在[1,+?)上为增函数的是 (  )

 A.y=(x-2)2 B.y=|x-1| C.y=1x+1 D.y=-(x+1)2

 6.函数f(x)=4x+12x的图象(  )

 A.关于原点对称 B.关于直线y=x对称

 C.关于x轴对称 D.关于y轴对称

 7.如果幂函数y=xa的图象经过点2,22,则f(4)的值等于 (  )

 A.12 B.2 C.116 D. 16

 8.设a=40.9,b=80.48,c=12-1.5,则 (  )

 A.c> a>b B. b>a>c C.a>b>c D.a>c>b

 9 .设二次函数f(x)=a x2-2ax+c在区间[0,1]上单调递减,且f(m)?f(0),则实数m的取值范围是 (  )

 A.(-?,0] B.[2,+?) C.[0,2] D.(-?,0]?[2,+?)

 10.已知f(x)在区间(0,+?)上是减函数,那么f(a2-a+1)与f34的大小关系是 (  )

 A.f(a2-a+1)>f34 B.f(a2-a+1)?f34

 C.f(a2-a+1)?f34 D.f(a2-a+1)11.已知幂函数f(x)=x?的部分对应值如下表:

 x 1 12

 f(x) 1 22

 则不等式f(|x|)?2的解集是 (  )

 A.{x|-4?x?4} B.{x|0?x?4} C.{x|-2?x?2} D.{x|012.若奇函数f(x)在(0,+?)上是增函数,又f(-3)=0,则 的解集为(  )

 A.(-3,0)?(3,+?) B.(-3,0)?(0,3)

 C.(-?,-3)?(3,+?) D.(-?,-3)?(0,3)

 第Ⅱ卷(共90分)

 二、填空题:(本大题共4小题,每题5分,共20分,把最简答案填写在答题卡的横线上)

 13. 已知函数 若关于x的方程f(x)=k有两个不 同的实根,则实数k的取值范围是________.

 14.已知f2x+1=lg x,则f(21)=___________________.

 15.函数 的增区间是____________.

 16.设偶函数f(x)对任意x?R,都有 ,且当x?[-3,-2]时,f(x)=2x,则f(113.5)的值是____________.

 三.解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤).

 17.(本题满分10分) 已知函数 ,且 .

 (1)求实数c的值;

 (2)解不等式 .

 18.(本题满分12分) 设集合 , .

 (1)若 ,求实数a的取值范围;

 (2)若 ,求实数a的取值范围;

 (3)若 ,求实数a的值.

 19.(本题满分12分) 已知函数 .

 (1)对任意 ,比较 与 的大小;

 (2)若 时,有 ,求实数a的取值范围.

 20.(本题满分12分) 已知定义在R上的奇函数f(x)有最小正周期2,且当x?(0,1)时,f(x)=2x4x+1.

 (1)求f(1)和f(-1)的值;

 (2)求f(x)在[-1,1]上的解析式.

 21.(本题满分12分) 已知函数f(x),当x,y?R时,恒有f(x+y)=f(x)+f(y).

 (1)求证:f(x)是奇函数;

 (2)如果x为正实数,f(x)<0,并且f(1)=-12,试求f(x)在区间[-2,6]上的最值.

 22.(本题满分12分) 已知函数f(x)=logax+bx-b(a>0,b>0,a?1).

 (1)求f(x)的定义域;

 (2)讨论f(x)的奇偶性;

 (3)讨论f(x)的单调性;

2018年高二文科数学期末试卷答案

 2.D 在①中, 的定义域为 , 的定义域为 ,故不是同一函数;在②中, 的定义域为 , 的定义域为 ,故不是同一函数;③④是同一函数.

 3. C f(-3)=f(-1)=f(1)=f(3)=2-3=18.

 4. C 由x2+1=1得x=0,由x2+1=3得x=?2,?函数的定义域可以是{0,2},{0,-2},{0,2,-2},共3个.

 5. B 作出A 、B、C、D中四个函数的图象进行判断.

 6. D f(x)=2x+2-x,因为f(-x)=f(x),所以f(x)为偶函数.所以f(x)的图象关于y轴对称.

 7. A ∵幂函数y=xa的 图象经过点2,22,

 ?22=2a,解得a=-12,?y=x ,故f(4)=4-12=12.

 8. D 因为a=40.9=21.8,b=80.48=21.44 , c=12-1.5=21.5,所以由指数函数y=2x在(-?,+?)上 单调递增知a>c>b.

 9. C 二次函数f(x)=ax2-2ax+c在区间[0,1]上单调递减,则a?0,f?(x)=2a(x- 1)<0,x?[0,1],所以a>0,即函数图象的开口向上,对称轴是直线x=1.所以f(0) =f(2),则当f( m)?f(0)时,有0?m?2.

 10. B ∵a2-a+1=a-122+34?34,

 又f(x)在(0,+?)上为减函数,?f(a2-a+1)?f34.

 11.A 由题表知22=12?,?=12,?f(x)=x .?(|x|) ?2,即|x|?4,故-4?x?4.

 12. B 根据条件画草图 ,由图象可知 xf?x?<0?x>0,f?x?<0

 或x<0,f?x?>0?-3

 13. (0,1) 画出分段函数f(x)的图象如图所示,结合图象可以看出,若f(x)=k有两个不同的实根,即函数y=f(x)的图象与y=k有两个不同 的交点,k的取值范围为(0,1).

 14.-1 令2x+1=t(t>1),则x=2t-1,

 ?f(t)=lg2t-1,f(x)= lg2x-1(x>1),f(21)=-1.

 15.-?,12 ∵2x2-3x+1>0,?x<12或x>1.

 ∵二次函数y=2x2-3x+1的减区间是-?,34,?f(x)的增区间是-?,12.

 16.15. ∵f(-x)=f(x),f(x+6)=f(x+3+3)=-1f?x+3?=f(x),?f(x)的周期为6.?f(113.5)=f(19?6-0.5)=f(-0.5)=f(0.5)=f(-2.5+3)=-1f?-2.5?=-12?-2.5?=15.

 17.解:(1)因为 ,所以 ,由 ,即 , .?5分

 (2)由(1)得:

 由 得,当 时,解得 .

 当 时,解得 ,所以 的解集为 ?10分

 18.解:(1)由题 意知: , , .

 ①当 时, 得 ,解得 .

 ②当 时,得 ,解得 .

 综上, .?4分

 (2)①当 时,得 ,解得 ;

 ②当 时,得 ,解得 .

 综上, .?8分

 (3)由 ,则 .?12分

 19.解:(1)对任意 , ,

 故 .?6分

 (2)又 ,得 ,即 ,

 得 ,解得 .?12分

 20.解: (1)∵f(x)是周期为2的奇函数,

 ?f(1)=f(1-2)=f(-1)=-f(1),

 ?f(1)=0,f(-1)=0 . ?4分

 (2)由题 意知,f(0)=0.当x?(-1,0)时,-x?(0,1).

 由f(x)是奇函数, ?f(x)=-f(-x)=-2-x4-x+1=-2x4x+1,

 综上,f(x)=2x4x+1, x?0,1?,-2x4x+1, x?-1,0?,0, x?{-1,0,1}.?12分

 ?f(x)+f(-x)=0,得f(-x)=-f(x),?f(x)为奇函数.?6分

 (2)设x1则f(x2-x1)=f(x2+(-x1))=f(x2)+f(-x1)=f(x2)-f(x1).

 ∵x2-x1>0,?f(x2-x1)<0.?f(x2)-f(x1)<0,即f(x)在R上单调递减.

 ?f(-2)为最大值,f(6)为最小值.

 ∵f(1)=-12,?f(-2)=-f(2)=-2f(1)=1,

 f(6)=2f(3)=2[f(1)+f(2)]=-3.

 ?f(x)在区间[-2,6]上的最大值为1,最小值为-3. ?12分

 22.解: (1)令x+bx-b>0,解得f(x)的定义域为(-?,-b)?(b,+?).?2分

 (2)因f(-x)=loga-x+b-x-b=logax+bx-b-1

 =-logax+bx-b=-f(x),

 故f(x)是奇函数.?7分

文章标签: # 高考 # 数学 # 考查